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Abstract

This paper empirically and theoretically analyzes the impact of external reference pricing (ERP) on
launch delays in the market for pharmaceutical products. Governments that implement ERP use prices
in other countries as negotiation benchmarks in an effort to bring down the cost of prescription drugs.
By doing so, they limit the ability of firms to price discriminate across countries, and create an incentive
to withhold drugs from countries with lower willingness to pay. Using data on pharmaceutical sales in
European countries from 2002 to 2012, we document the presence of widespread launch delays across
Europe — up to three years on average in Eastern Europe. To distinguish between strategic delays
caused by ERP and delays that arise for other reasons, we develop a dynamic structural model of entry
that allows for externalities in price, which we estimate using a novel moment inequality approach. We
find that removing ERP would reduce delays in Eastern Europe by up to 14 months per drug. At the
same time, ERP has a small impact on firm revenue, so it would be theoretically possible to compensate
firms for their profit loss in exchange for forgoing strategic delays.
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1 INTRODUCTION

The rise in prescription drug spending is a growing concern for many countries around the world.
Outside the US, governments try to control spending by directly negotiating prices with manu-
facturers, and implementing a variety of policy tools to limit markups on patent-protected drugs.
A widely adopted practice, usually referred to as External Reference Pricing (ERP), consists of
benchmarking drug prices by using prices in other countries. ERP has an obvious appeal for gov-
ernments because it is simple, it guarantees that prices will be in line with other countries, and
it can reduce spending. Firms however, worry about the limitations that ERP imposes on their
ability to optimally price discriminate across countries with different willingness to pay.

The debate over the effects of reference pricing has important implications for policy. Us-
ing ERP carries virtually no negative repercussions for the home country, but it can impose an
externality on foreign countries. In particular, firms will have an incentive to delay entry in low-
income countries whose prices are referenced by high-income countries whenever the externality
imposed through reference pricing outweighs the revenue earned by expanding into additional
markets. Drugs often enter in many markets several years after receiving marketing approval, so
the welfare loss generated by ERP could be very large (Reich, 2000).

In this paper, we develop a structural model of entry that allows for externalities in price across
markets, and use it to provide an estimate of the impact of ERP on launch delays. In the model,
firms maximize profits by choosing an optimal entry sequence, conditional on demand and price
conditions in each country. To isolate the impact of reference pricing we exploit the fact that ERP
operates through a very specific channel. On the margin, ERP generates delays when the change
in expected profits from launching in an additional country is outweighed by the expected loss
from the externality generated by reference pricing.

We estimate the model using data on sales of pharmaceutical products across all Member
States of the European Economic Area (EEA). Most European countries adopt ERP among the cri-
teria used to set prices. Moreover, the EEA includes countries with highly heterogeneous income,
which creates the potential for strategic delays. Empirically, widespread launch delays occur in
almost all European countries, though some of these delays are likely due to factors other than
reference pricing. Before launching, governments and drug manufacturers engage in negotiations
that can last several months, and countries can also delay the entry of products they consider un-
safe. On average, relative to their marketing approval date, products are delayed by about 3 years
in Eastern European countries, and 1 year elsewhere.

We begin our exercise by estimating demand and price in each country. We use a random
utility nested logit model for demand, and estimate prices using a flexible parametric function
that tries to capture the decision process of the government. The function predicts equilibrium
prices as a combination of the reference price and an internal government price — which represents
the price that would have been granted in the absence of reference pricing. The degree to which
the reference price affects the equilibrium is a country-specific parameter in the pricing model. We
find that allowing for this additional degree of heterogeneity is important, as many countries do
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not follow their stated ERP guidelines perfectly.
Our estimated demand and price primitives suggest that the externality generated by reference

pricing is large enough to incentivize strategic delays. In simulations that compare the expected
revenue of various entry sequences we find that firms earn higher revenue when delaying entry
in some countries. In particular, delaying entry in at least some Eastern European countries yields
higher revenue for 70% of drugs. In roughly 20% of cases, withholding the product from all East-
ern European countries would be preferable to launching everywhere at the same time. However,
we find that virtually no drugs would earn higher revenue by delaying entry in countries outside
Eastern Europe.

To quantify the impact of ERP we must isolate delays due to reference pricing from idiosyn-
cratic delays generated by sources outside the control of the firm, such as the time needed to
negotiate the terms of entry. We model this residual source of delay using binary shocks. In each
period, firms that apply for entry in a given country draw a shock. If it comes up negative, entry
has to be postponed until the next period, when a new shock is drawn.1

We estimate the probability of experiencing an idiosyncratic delay using a newly developed
moment inequality estimator.2 While moment inequalities have been applied to single-agent mod-
els of entry with spillover effects or externalities (Holmes, 2011; Morales et al., 2017), what makes
our approach novel is that our empirical framework presents an additional complication: firm
strategies are partially unobserved. The entry sequence we observe only reveals when firms were
able to enter. Situations in which the firm applied and was delayed however, are observationally
equivalent to situations in which the firm did not apply.

Our inequalities rely on a revealed preference argument. We assume that firms are maximizing
expected profits and compare the expected profits of the observed entry sequence to the counter-
factual profits of playing a different strategy. These inequalities will not always hold for individual
firms: the realization of the random delay shocks in the data might prevent the firm from achiev-
ing the desired entry sequence. However, we show that these differences disappear if we consider
average payoffs across many firms. Our estimator generates moment conditions based on the
payoff of the average drug, and relies on a generalized version of the law of large numbers for
non-identical, independently distributed random variables with finite mean and variance. In our
empirical application we find that these moment conditions can only provide a lower bound on
the parameter of interest. We calculate an upper bound by exploiting the fact that the approval
date is the earliest time at which the firm could have sent an entry application.

Over the period from 2002 to 2012, our estimates imply that replacing ERP with a pricing

1We abstract from fixed entry costs. In a finite-horizon setting with fixed entry costs, delaying is only justified if
costs are declining or highly fluctuating. Neither of these seems likely in the context we study. In general, fixed costs
of entry of should be small for drugs that have already received marketing approval.

2Estimation techniques for dynamic entry models that rely on solving the firm’s problem are generally unfeasible
in settings similar to ours due to the cardinality of the action space of the firm (for a set of N countries over a T-period
horizon, the firm can choose between TN possible strategies). Instead, our approach does not require us to identify the
optimal strategy of the firm or compute the value function, though it can only provide bounds on the parameters of the
model.
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mechanism that does not generate externalities in price across countries would reduce delays in
each Eastern European country by up to 63%, or 14 months per drug on average.3 Several possi-
ble alternatives to ERP have been proposed in the policy literature, from transitioning to a central-
ized European cost-effectiveness evaluation system (Drummond, 2003), to implementing two-part
pricing systems where products are supplied at cost and governments make transfers to firms in
order to reach static and dynamic efficiency, to creating barriers preventing reference pricing and
import-export of pharmaceutical products across countries (Towse et al., 2015). The exact policy
would affect firm profits, but not the implications for strategic delays, so our counterfactual has
broad external validity.

Removing ERP would get rid of strategic delays, but would be hard to implement politically,
so we also suggest a way to eliminate strategic delays while leaving ERP in place. Under our
proposal, a central European authority would offer each firm a lump-sum subsidy in exchange for
sending entry applications to all countries simultaneously. We estimate that the size of the subsidy
would be small — around e20 million for the average drug. This is a consequence of the fact that
in the current equilibrium ERP does not have a large impact on firm revenue (our estimates indi-
cate that Eastern European prices are not much lower than prices in Western European countries
that use ERP more aggressively).

Our analysis has some limitations. The complexity of the problem we consider forces us to
make several simplifying assumptions, which are necessary to perform the empirical analysis,
but not necessarily desirable. First, we assume that firms act as single-agents. Even though the
firms we consider are monopolists with regards to the specific molecule they produce, virtually all
therapeutic classes we consider contain at least a few different molecules, which are presumably
substitutable with one another to some degree. Second, we assume that there is no structural
error in either our demand or price model. This assumption is necessary to build the moment
inequalities given that firm strategies are unobserved. Finally, we do not explicitly model the
government’s choice of a reference pricing function, opting instead to treat it as an exogenous
feature. We discuss these limitations more in depth in the relevant sections of the paper and in the
conclusion.

Our paper contributes to four main strands of economic literature. First, it contributes to a
growing body of work, both empirical and theoretical, studying the impact of price regulation on
the access to pharmaceutical products. The empirical side of this literature usually analyzes the
impact of government policy on launches using a reduced-form framework (Danzon et al., 2005;
Danzon and Epstein, 2012; Kyle, 2007; Kyle and Qian, 2013; Cockburn et al., 2016). A notable ex-
ception is Duso et al. (2014), which examines the welfare impact of parallel trade in Germany.4

On the theory side, this literature has focused on simulating the impact of reference pricing on

3By distinguishing between Eastern Europe and Western Europe we do not mean to associate any value to the
geographic location of these sets of countries. Rather, we draw this demarcation for convenience. Countries in Eastern
Europe share certain traits that make their bundling convenient for our purpose: they have lower income (and prices),
and smaller market size than virtually all countries in Western Europe.

4Another methodologically related paper is Chaudhuri et al. (2006), which uses structural techniques to estimate the
impact of patent policy on patient welfare in the Indian market for quinolones.
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firm strategy (e.g. Borja, 2014; Toumi et al., 2013; Stargardt and Schreyögg, 2006; Houy and Jelo-
vac, 2015), or establishing conditions under which regulation that limits price discrimination is
beneficial or harmful to welfare (e.g. Birg, 2016; Brekke et al., 2007, 2015, 2016; Matteucci and Re-
verberi, 2016). Our contribution is that we explicitly model the impact of reference pricing on firm
incentives and develop an estimation strategy to isolate the effect of this policy on launch delays.

Second, our paper is related to a series of studies on the impact of regulation that links prices
to endogenous market benchmarks. For example, both Medicare Part B and Medicaid tie drug
reimbursements to the average of reported private market prices. Duggan and Scott Morton (2006)
show that in the case of Medicaid this regulation creates a distortion that leads to higher prices
in the private market. Another set of policies with a similar effect are so-called “price-linked”
subsidies, i.e. subsidies that are linked to market prices. Jaffe and Shepard (2017) and Decarolis
(2015) show that these types of subsidies can distort premiums in health exchanges and Medicare
Part D respectively. More generally, price externalities across firms have been detected in the
absence of government intervention. Grennan (2013) and Grennan and Swanson (2016) show that
knowing how much rival hospitals paid for medical devices can affect future prices. Our paper
shows that if pricing strategies are constrained, firms can also respond along different margins
(i.e. by manipulating their entry strategy).

Third, we contribute to the vast empirical Industrial Organization literature on entry models,
which originated with Bresnahan and Reiss (1991) (for an overview of this literature see Berry and
Reiss, 2007). Most papers in this literature use stochastic fixed costs of entry (e.g. Seim, 2006).
Since these costs are less relevant in our setting, we take a different approach and replace them
with stochastic delay shocks. These shocks have different implications for estimation: they do not
directly affect the profit of the firm, but rather impose stochastic constraints on the action space of
the firm. Moreover, when the realization of delay shocks is unobserved, the firm’s strategy is also
unobserved, which creates additional challenges in estimation.

Our final contribution is to the literature on partial identification started by Manski (2003). We
develop a novel approach to deal with the challenges introduced by delay shocks. The empirical
literature on partial identification is growing and includes several papers (Dickstein and Morales,
2016; Eizenberg, 2014; Holmes, 2011; Illanes, 2016; Katz, 2007; Morales et al., 2017; Pakes et al.,
2015). Our approach is closest to that of Holmes (2011) and Morales et al. (2017), but differs in
the way that identification is obtained. While their approach identifies the set of parameter values
for which the firm’s observed strategy is optimal, our approach identifies the set of parameters
consistent with the revenue earned by the firm in the data.

The rest of the paper proceeds as follows. Section 2 introduces the institutional environment of
the European pharmaceutical market. Section 3 describes the data and discusses preliminary evi-
dence that supports the hypothesis that firms are delaying launches in countries with low prices in
order to avoid the impact of external reference pricing. We present our theoretical model of entry
in Section 4. The estimation is then divided in two parts. We present our empirical model and
estimation results for demand and price in Section 5, while Section 6 contains the dynamic analy-
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sis. We discuss the implications of our results for counterfactuals and policy analysis in Section 7.
Finally, in Section 8 we provide some concluding remarks, a discussion of the paper’s limitations,
and a roadmap for future research.

2 THE EUROPEAN PHARMACEUTICAL MARKET

Europe represents roughly 22% of the world’s pharmaceutical market in terms of ex-factory sales;
half of the US and Canada combined (EFPIA, 2016). Much like in the United States, the debate
over pharmaceutical spending and how to best control it is a topical issue in many European
countries. Even though prices tend to be lower than US prices (Danzon and Furukawa, 2003,
2006), governments are concerned about rising healthcare expenditure, and increasingly look to
pharmaceuticals as a potential area for savings (Deloitte, 2013).

In this section we outline the main characteristics of the European pharmaceutical market,
focusing on the aspects of regulation that are most often associated with launch delays.

2.1 Marketing Approval of Pharmaceutical Products in Europe

In all countries around the world new drugs can only be sold after being reviewed for efficacy and
safety. The European Medicines Agency (EMA) oversees this process in the European Economic
Area. While in other parts of the world marketing approval for new drugs is generally granted
by a regulatory authority whose jurisdiction is limited to one country (i.e. the FDA in the United
States, or the PMDA in Japan), member states of the European Economic Area have been relying
on a shared approval process since 1995 – the year the EMA was founded.5 Though national drug
agencies still exist, their effort is now organized and regulated by the EMA.

Pharmaceutical companies seeking approval for their products can choose between three pos-
sible procedures. The centralized procedure is administered by the EMA itself, and grants automatic
approval in all EEA Member States. It is available to all drugs, and compulsory for certain classes
of drugs, including biologics.6 Drugs for which the centralized procedure is not mandatory can
also go through two additional channels. If the drug already has a marketing authorization from
any EEA member state, the firm can use the mutual recognition procedure to extend it to any other
member state using a fast-track procedure taking no longer than 90 days (European Parliament,
2001).7 The other alternative is the decentralized procedure. In this case, the firm submits an appli-
cation to multiple countries at the same time and designs one as the Reference Member State in
charge of reviewing it (European Parliament, 2004).

5The European Economic Area consists of all Member States of the European Union, plus Norway, Iceland, and
Liechtenstein. Switzerland (also in our data), is a member of the European Free Trade Area, but not of the EEA.
However, it has a series of bilateral trade agreements that allow it to take part in the common European market.

6The full list of drugs that must receive approval by the EMA includes: human medicines containing a new active
substance to treat HIV or AIDS, cancer, diabetes, neurodegenerative diseases, auto-immune and other immune dys-
functions, and viral diseases; medicines derived from biotechnology processes; advanced-therapy medicines, such as
gene-therapy, somatic cell-therapy or tissue-engineered medicines; and medicines seeking orphan designation.

7Other countries can to refuse the extension by claiming that doing so would create significant risks for public health,
although this does not happen very frequently.
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The centralized marketing approval process ensures that the cost of seeking additional mar-
keting approvals all but disappears as soon as firms receive marketing approval from any country
in Europe (or from the EMA). This eliminates one of the most common explanations for launch
delays. However, firms may still incur into delays because individual countries retain the ability
to regulate prices independently from one another.

2.2 Price Regulation of Pharmaceutical Products in Europe

All European countries provide some form of single-payer coverage, meaning the government
bears the vast majority of prescription drug costs. Therefore, virtually all governments impose
strict restrictions on drug prices, with the primary goal of controlling spending.

Pricing restrictions typically only apply to drugs that are paid for by the government through
the public health insurance system. However, since European citizens overwhelmingly access
health care through government-funded programs, the exclusion of a product from public for-
mularies results in its de-facto exclusion from the national market (European Commission, 2012).8

The ability to effectively deny entry provides governments with the necessary leverage to demand
lower prices.

Firms petition for reimbursement status by submitting pricing and reimbursement applica-
tions to each government. The time required to review an application and negotiate a price can
vary significantly across countries. In theory, Directive 89/105/EEC (informally known as the
Transparency Directive) states that governments can take no longer than 180 days to review a
pricing and reimbursement application (Council of European Communities, 1988). In practice
however, this limit is often surpassed, both because of enforceability issues, and because gov-
ernments can stop the clock by asking for additional information. Data on turnaround times for
applications is scarce, but survey evidence from the late 1990s indicates that the average varies
substantially, from 0 days in UK and Germany, to over two years in Belgium (OECD Health Policy
Studies, 2008; PICTF, 2006).

The requirements of pricing and reimbursement applications vary across countries, though
firms must generally include both a clinical dossier detailing the medical benefits of the drug,
as well as an economic report with projected sales and a proposed price. The government then
uses this information as inputs into the pricing decision. In theory, the government strives to
set prices that reflect the value of each drug and reward the firm’s innovative efforts, while at
the same time keeping spending under control. In practice, estimating the value of a drug is a
complicated and costly exercise. Most countries require firms to disclose the price charged for the
drug in other countries, and then try to set prices that are approximately consistent with what
other governments are paying.

It is important to stress that ERP is not the only (or even the main) policy instrument used
by countries in setting prices. Countries often rely on a variety of other methods, including, but

8The only exceptions to this rule tend to be generic drugs, whose low price tag makes them a cost-effective option
even in the absence of government coverage.
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not limited to Health Technology Assessments, internal reference pricing (which links prices of
molecules within a pre-specified equivalence class), and price freezes/cuts. These policies will
be especially important in situations when a reference price cannot be observed, or when the
reference price is higher than what the government is able to pay.

Finally, governments ultimately care about overall pharmaceutical spending rather than prices.
Price-volume agreements that protect spending such as clawback policies are common, meaning
that the outcome of the negotiation between the government and the firm is usually not a set list
price, but rather a price schedule that depends on volume. Prices and volumes will also be cor-
related if the government is willing to provide more favorable coverage to firms that give better
pricing conditions.

2.3 Overview of External Reference Pricing

In 2012 all European countries indicated ERP as one of the criteria used in setting prices except
Denmark, Germany, Sweden, and the UK.9 Both the pharmaceutical industry and policymakers
have acknowledged the externality generated by ERP and its role in producing launch delays for
new pharmaceutical products (EFPIA, 2014; Carone et al., 2012). However, governments remain
reluctant to abandon the policy, because of the savings they claim it generates.

The two most important aspects of ERP policies are the reference basket (i.e. the basket of
countries whose prices are sampled), and the formula used to compute the reference price. For
both, there is significant variation across countries.10 Some governments (e.g. Austria, Belgium,
Finland, Hungary, and Poland) require firms to submit prices from all other countries in the Euro-
pean Union. Others only reference similar countries, both in terms of geographical proximity, size,
and income level — for example, Estonia references Hungary, Latvia, and Lithuania, while France
references Germany, Italy, Spain, and the UK. In terms of the reference formula, most countries
use the average across the reference basket, but a few (e.g. Latvia, Poland, and Romania) use the
lowest price, while others still use slight variations: Bulgaria, Greece, and Norway use the average
of the three lowest prices in the basket. Figure 1 offers an overview of cross-country variation in
reference baskets and formulas.11

The stringency with which each country adheres to their stated ERP guidelines may vary
across countries. Some governments state that ERP is only used to “inform” the pricing deci-

9Since then, Denmark and Germany have adopted ERP as well.
10Contrary to cross-country variation, over time variation in ERP policies is much more scarce. The biggest policy

change happened in 2010 when Greece switched its reference function in an effort to lower prices. Other changes are
tied to the entry of new Member States in the European Union or in the Eurozone. These occurred in Austria, Belgium,
Finland, and Italy (all of whom reference EU member states); and Spain (which references countries in the Eurozone).
Finally, Portugal, Hungary, and Poland made small adjustments to their reference baskets at various points. Please
refer to the Online Appendix for more details.

11The table shown in the paper represents a snapshot of reference baskets and formulas in 2012. It was built by
combining several published sources (Carone et al., 2012; European Federation of Pharmaceutical Industries and As-
sociations, 2014; Kanavos et al., 2011; Leopold et al., 2012; Wilsdon et al., 2013) with unpublished IMS reports. For the
analysis used in the paper we generated yearly tables to capture some small changes that happened in a few countries
with regard to their reference basket and the formula used.
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sion, meaning that we might expect prices to be affected by ERP but not necessarily to be perfectly
aligned with the reference pricing benchmark. In other instances, governments may push for
prices that are below the benchmark if they expect to sell higher volumes than the referenced
countries.12 Countries whose governments claim to only use ERP informally include Belgium,
Finland, France, Italy, Poland, and Spain.13

We use the reference basket and formulas to estimate reference prices in our model, but we
exclude a few additional characteristics of ERP policies that can also vary across countries. We
briefly list them here for completeness. First, countries update the reference prices with varying
frequency, from as little as every 6 months (e.g. Greece, and Slovenia) , to as many as 60 (Finland).
Second, countries can use raw ex-factory prices, or apply a PPP adjustment (all Scandinavian
countries do so). Third, not all countries apply ERP to the same set of drugs. Most countries
apply ERP only to drugs that are reimbursed through the national health insurance system, but
some apply it to all new innovative drugs (e.g. France), and others to all drugs, regardless of
reimbursement status (e.g. Greece).

2.4 Parallel Trade

ERP affects firm’s incentives by limiting their ability to price discriminate across countries. An-
other force that operates through the same channel is parallel trade. The European Economic
Area is a free trade area, with no limits over the flow of goods across borders. This includes
patent-protected products, such as brand prescription drugs. Parallel importers purchase drugs
in countries with low prices and sell them abroad where prices are higher.

In a world without frictions, parallel trade would drive the price of all drugs to the minimum
available, and act as an extreme version of reference pricing. In practice, this does not happen, be-
cause firms have a variety of tools that they employ to fight the impact of parallel trade. For exam-
ple, Kyle (2011) shows that firms differentiate the products they sell across countries by changing
strength, dosage, or packaging. Another important tool is the ability to manage supply quotas,
which was affirmed in a European Court decision in 2008.14 Moreover, Costa-font and Gollier
(2005) suggest that the difference in prices between the parallel traded product and the original
is negligible, with gains from trade accruing mostly to intermediaries in the distribution chain,
perhaps as a result of weak substitution incentives for pharmacies and physicians.

12According to several informal conversations of the authors with industry insiders, these sort of arguments appear
to be popular in countries such as Italy, where the prices of smaller markets are included in the reference function.

13Sources are in disagreement as to whether France and Italy use ERP formally or informally. EFPIA (2014) classifies
both as Informal/Formal.

14The case pitted GlaxoSmithKline against a group of Greek wholesalers and parallel im-
porters (Joined Cases C-468/06 to C-478/06, court opinion and proceedings available at
http://curia.europa.eu/juris/liste.jsf?language=en&num=C-474/06). In November 2000 GlaxoSmithKline stopped
supplying certain drugs to Greek wholesalers, opting instead for direct delivery to pharmacies and hospitals. Their
goal was to prevent the sale of medicines destined to the Greek market to parallel importers. The resulting lawsuit
ended with a decision on September 18th, 2008, which prohibited the direct restriction of parallel trade by altering the
traditional distribution channels. However, the decision also carved out the possibility for the firm, to take reasonable
measures to protect itself, such as establishing supply quotas to wholesalers based on current market demand.
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Even if it does not affect prices, however, parallel trade can still undermine firm revenue.
Using our data we are unable to separate the effect of reference pricing from that of parallel trade.
That being said, our model will generally apply to any policy that limits price discrimination. In
counterfactual exercises where we lift pricing restrictions we likewise assume that both reference
pricing and parallel trade are unavailable (together with any other policy that could potentially
affect price discrimination).

3 PRELIMINARY EVIDENCE OF THE IMPACT OF ERP

We now present some preliminary evidence of the presence of strategic delays. Our results con-
firm empirical patterns that several researchers have documented using similar data (Cockburn et
al., 2016; Danzon et al., 2005; Danzon and Epstein, 2012; Kyle, 2007), but we also highlight novel
facts on the effect of reference pricing. We show that delay patterns are consistent with a strategic
response to reference pricing rules, but that some delays are more likely to be generated by id-
iosyncratic mechanisms, such as the turnaround time of pricing and reimbursement applications.
We also find that over time prices fall in countries who apply ERP, relative to countries who do
not.

The section is divided in three parts. We start by describing our data in 3.1. Next, in 3.2, we
characterize the extent of launch delays in Europe, and the differences we observe across countries.
Finally, we look at price trends and their correlation with delays in 3.3.

3.1 Data

The main source of data for the empirical analysis is the MIDAS database maintained by Quintiles-
IMS, a global information company specializing in the health care sector. The data covers sales of
all pharmaceutical products for European countries from 2002 to 2012.15 It consists of a quarterly
panel of volume and revenue sales divided by country. Products are defined by a combination of
molecule, firm, product name, form, strength, and package. Quintiles-IMS collects this informa-
tion by surveying pharmacies and hospitals.

To the best of our knowledge, this database represents the most comprehensive source of data
on sales in the European pharmaceutical market. Nonetheless, it has a few important limitations,
which we discuss below.

First, the data does not provide any information on the approval dates of drugs. We collect
approval dates for all EMA-approved medications from the EMA’s website, and the approval
date of all mutual recognition applications from an internet database maintained by the Heads of
Medicines Agencies (HMA).16

15We are missing data entirely for Cyprus, Iceland, Lichtenstein, and Malta. A few other countries have partially
missing data. See the Online Appendix for more details.

16Both datasets are publicly available. The HMA is a network of the heads of the European national authorities in
charge of the regulation of medicinal products for human and veterinary use in the European Economic Area. The data
can be found at http://mri.cts-mrp.eu/Human
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Second, IMS reports ex-factory revenue sales, which do not usually incorporate rebates and
discounts that are sometimes granted by individual payers. While in the US estimates of dis-
counts for brand drugs oscillate between 20-40% during the period we consider (see Congressional
Budget Office, 2005; Aitken et al., 2016), discounts tend to be much lower in Europe (Danzon and
Furukawa, 2003, 2006). According to industry insiders, average rebates for patent-protected brand
drugs are rarely above 10%.17 Unfortunately, there is currently no available data on pharmaceuti-
cal rebates in Europe, so in our paper we simply use the prices implied by the IMS data.18

Third, the data contains some missing information for certain countries and years. Because of
the externalities generated by reference pricing, missing data points can have an impact on non-
missing observations as well. To minimize the impact of missing data we resort to imputation
using a variety of techniques.19

We integrate the IMS data with a few additional sources. On top of the aforementioned EMA
and HMA data on approval dates, we collect GDP and population data from Eurostat, as well as
data on the incidence of diseases in each European country from the Global Burden of Disease
Study. We use that information to build the market size variable for the demand estimation. We
also use quarterly exchange rates from the European Central Bank to convert sales data from
countries that use currencies other than the Euro.

Sample Selection We observe around 6,000 molecules and 3,000 firms in our data. Most of these
molecules and firms are old off-patent and generic products with negligible yearly sales, and many
are only available in one or two countries. We are interested in new, on-patent products whose
potential market spans multiple European countries. Hence, we select a subsample of drugs that
satisfy the following three criteria:

1. The drug was first launched on or after January 1st, 1995.

2. The drug had at least one new launch in a European country on or after January 1st, 2002

3. One of the three following conditions is satisfied:

(a) The drug was approved by the EMA using the centralized procedure between 1995 and
2012,

(b) The drug successfully completed at least one Mutual Recognition Application between
1995 and 2012,

17Author’s own estimation based on several personal conversations.
18As an aside, contracts that combine list prices with hidden discounts could circumvent ERP and restore the ability

to use price discrimination. However, this does not seem to be the case even though these contracts are theoretically
available. One possible reason why rebates are underutilized in Europe is that governments have higher transparency
requirements than private firms, due to the necessity to account for their spending. Hence hiding discounts might
be more difficult. Another possibility is that firms know that if they were to avoid ERP by using large discounts,
government might find ways to force them to reveal those discounts.

19See the Online Appendix for more details.
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(c) The drug is sold in at least 10 countries by 2012, and is classified as a patent-protected
brand drug for at least some part of our sample period.

We end up selecting 481 drugs (we define a drug as the combination of a molecule, a firm, and
a therapeutic class).20 Most of the products we select received approval from the EMA through
the centralized procedure or applied for mutual recognition. We also include a few drugs that we
were not able to match with the EMA and HMA data on approval dates, but that we observe being
sold in many European countries.21 Unsurprisingly, drugs in our main sample experience much
greater sales and diffusion relative to the average drug in the data (see Table 1). The median drug
in our main sample is available in 22 countries (by the end of 2012), and collects yearly sales of
e38.6 million across all European markets. For comparison, the median product in the full sample
is sold in only 1 country, and earns less than e100,000 every year.

We also select a subsample of drugs within our main sample whose patent expired prior to
December 31st, 2012. This smaller group is used in dynamic analysis, when our methodology
requires that we are able to compute the overall expected payoff of a drug until the time its patent
expires.22 This smaller sample consists of 87 drugs and has similar characteristics relative to the
main sample of drugs in terms of sales and diffusion across European countries. The only main
difference is in how these drugs were approved. Most of the drugs in our main sample were
approved by the EMA using the centralized procedure. However, a majority of the drugs in the
dynamic sample chose the Mutual Recognition Procedure.

3.2 Launch Delays in the EEA

This section documents the extent and variation of launch delays across European countries. We
uncover two main patterns. First, virtually all countries experience meaningful launch delays on
average. Second, there is substantial heterogeneity in average delays across countries. Some of
this heterogeneity is explained by income: low-income Eastern European countries experience on
average 2 additional years of delay relative to the rest of Europe. However, we also find significant
variation in average delays within high- and middle-income countries.

20All molecules in our main sample are sold by a single firm, but can sometimes be available in different therapeutic
classes. In these cases, IMS reports separate observations for each therapeutic class. We keep this distinction since our
demand estimation relies on therapeutic classes to define markets.

21For these products we impute the European approval date as the date of the fifth launch. We do not use the first
launch because in many instances products that apply through the mutual recognition procedure start selling in the
reference member state a year or two in advance relative to the rest of Europe.

22Since patent expiration dates can vary slightly across countries, we set period T as the latest expiration date among
those of France, Italy, and Spain. Patents generally expire roughly at the same time in most countries, since they are
administered by the European Patent Office. However, some countries can choose to grant extensions to individual
patents. In our data we also occasionally observe earlier than expected patent expiration dates for some Eastern Eu-
ropean countries. We choose these three countries because they are the three largest markets that use ERP. Therefore,
when their patent protection expires, the strategic incentives to delay launches should become close to zero. Empiri-
cally, we observe only a total of 11 country launches occurring after period T, which suggests that our approximation
is accurate.
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Figure 2 reports delays by country using the full unbalanced sample of 481 main products.23

The graph plots average launch delay in months, conditional on entry and calculated starting
from the approval date of each product. The average delay ranges from as little as 3 months in
the Netherlands, to as much as 3 and a half years in Romania. We distinguish between short- and
long-term delays to highlight the different nature of delays in low-income countries (we consider
delays of less than 4 years as “short-term”). Delays in high- and middle-income countries are
almost exclusively short-term in nature, and potentially explained by slowdowns in the bureau-
cratic process, or other idiosyncratic factors outside the control of the firm. Delays in low-income
countries however, are very likely to be long-term in nature, which is more consistent with an ex-
planation based on strategic delays: Eastern European countries cannot afford to pay high-enough
prices, so firms deliberately withhold their products until later.

3.3 Price Trends Over Time and Across Countries

This section examines the relationship between prices and delays, and describes price variation
across countries and over time. We document a strong inverse relationship between price level
and delays, and show that prices in countries that use ERP fall over time relative to prices in
countries that do not use ERP.

We calculate the price level in each country using a fixed effect regression, and plot the coeffi-
cients against average delays (Figure 3).24 There are three main takeaways from this figure. First,
price levels and delays are negatively correlated, as we would expect if firms delayed entry in
countries that cannot afford to pay high prices. Second, countries with a large population tend to
experience shorter delays relative to the benchmark set by the best-fit line, while countries with
low population tend to experience longer delays. This is also consistent with an explanation for
delays that is based on reference pricing: firms will be more willing to surrender a low price in
large countries since the larger market size will make up for the potential loss from the externality
on price. Third, the effect of market size is asymmetric: low-income countries are consistently
penalized for market size, but small high-income countries are equally likely to fall above or be-
low the best-fit line. This is once again consistent with a strategic reaction to ERP: small market
countries where prices are high do not generate a negative effect on prices, and therefore should
not be penalized.25

23Note that this means that the sample is truncated. For a similar look at delays in a balanced (but smaller) sample,
see the Online Appendix.

24Average delay comes from Figure 2. Price level variable is calculated as a country-specific fixed effect γj in a
regression of log price on various fixed effects:

ln
(

pijt

)
= θi + γj + δt + εijt

In the regression, i indexes drugs, j indexes countries, and t indexes years.
25Once again, Netherlands is an outlier on this graph. The price level in the Netherlands is probably underestimated

for three reasons. First, the data is missing hospital drugs, which tend to be more expensive. Second, oftentimes in our
data the same product is more expensive when sold through the hospital channel, which means that if we only observe
retail sales we will underestimate the price of a product that is also sold in hospitals. Third, the fact that the sample
starts in 2007 means that most of the years occur during the Great Recession, when many countries cut prices.
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In Figure 4 we look at the price of drugs over their life-cycle. To do so, we run the following
regression:

ln
(

pijt
)
= θi + γja + δt + ε ijt

where γja is a fixed effect for country and drug age, measured in years starting from the approval
year. We also include drug fixed effects θi and year fixed effects δt.

We compare the evolution of drug prices across two groups of similar countries, some of which
do not use ERP. The first is the group of the four largest countries in the Eurozone: France, Ger-
many, Italy, and Spain. The second is the block of Scandinavian countries: Denmark, Finland,
Norway, and Sweden. Both groups contain countries that do not use ERP (Germany in the first
group; Denmark and Sweden in the second). We are not interested in the price level differences
among these countries, but rather in whether price trends are divergent. To check whether that is
the case we plot the difference between the γja coefficients for Germany and Denmark and those of
the other countries in the respective groups. In both cases we see that relative prices fall over time
in countries that use ERP relative to the benchmark provided by countries that do not use ERP.26

This is consistent with the additional downward pressure that we would expect to see through
the external reference pricing channel: as the product is launched in more countries, prices fall
wherever ERP is used relative to countries where ERP is not used.

4 A DYNAMIC MODEL OF ENTRY WITH EXTERNALITIES IN PRICE

A pharmaceutical firm l owns a set Il of patent-protected molecules (indexed by i) with a market-
ing authorization for sale in a finite set Ni ⊆ N = {1, . . . , N} of markets (European countries),
indexed using the subscript j.27 The patent on each molecule has an expiration date, Ti periods
into the future, at which point generic alternatives are allowed to enter and profits are driven to
zero.28 The firm’s objective is to maximize profits over the life-cycle of their products. We denote
the last period of the firm as Tl = maxi∈Il Ti.

In each period, the firm is solving a two-part problem:

1. In what countries should the products be launched?

2. What prices should be set in each country?

We are interested in understanding strategic launch delays, which are the outcome of the first part
of the problem. Of course, the optimal launch strategy will depend on the equilibrium prices that

26The only potentially unexpected pattern is that prices fall in Sweden after about 5 years, almost to the level of
Finland, even though Sweden does not use External Reference Pricing. However, prices can fall over time for many
reason, and countries can use many other tools outside of Reference Pricing to reduce spending.

27Even though in theory all drugs can easily be approved for all countries in the EEA, we allow for the possibility
that the drug might not be able to enter in all countries. In some occasions, governments can ban drugs if they are
concerned about side effects. Hence, we only assume that a drug can enter in a country if we observe sales in the data.

28This assumption can be relaxed in many ways without significantly altering the model. The key result that has to
hold is that there are no more strategic incentives to delay once the product has lost patent protection. This is almost
certainly the case because once a product loses patent protection, governments can rely on much more effective price-
cutting measures, and no longer need to resort to external reference pricing.
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are set in each country. Firms, however, have limited agency in determining these prices, because
in Europe drug spending is subject to strict government regulation. Therefore, we do not explicitly
model the price-setting stage, but instead use a flexible parametric function to predict equilibrium
prices.29

Start by introducing some notation. Denote the launch sequence of firm l as Sl =
{

sij
}

j∈Ni ,i∈Il
,

where sij denotes the period of entry of product i in country j. Furthermore, we denote the launch
sequence at the end of a given period t as Slt =

{
sijt
}

j∈Ni ,i∈Il
where

sijt =

sijt if sij ≤ t

0 otherwise

Once a product has entered, we assume that it cannot be voluntarily withdrawn by the firm.30

Notice that under these assumptions, for each value of Slt there is exactly one possible path of pre-
vious realizations of the state variable that leads to Slt. This implies that knowing Slt is enough to
know Slτ for all τ < t. We similarly denote the launch sequence of other firms as S−l . Occasionally,
we will also use the shorthand S or St to indicate the launch sequences of all firms.

The model considers the possibility that the price of a product in a given market may affect the
price of that same product in other markets through the reference pricing channel. When the firm
launches a product in multiple countries, governments can observe prices abroad and calculate
a reference pricing benchmark that affects their own price. The extent to which this happens is
captured by a country-specific parameter in the price control function.

The optimal launch strategy will also depend on demand. The demand system and the price-
setting equation are primitives that the firm takes as given when making entry decisions. We
describe each in turn before specifying the dynamic entry model.

4.1 Demand System

We base demand on the logit random utility model.31 Markets are defined by a country, year,
and therapeutic class.32 We aggregate products within a therapeutic class at the molecule-brand
status level. We define three possible brand statuses: originator product (i.e. the brand sold by the

29We remain agnostic with respect to possible micro-foundations of this function, which do not matter for the results
of this paper. We show in Appendix A.3 that the equation can be derived from a static Nash Bargaining model.

30Empirically, we only observe products being withdrawn because the EMA has decided to revoke the marketing
authorization upon reviewing post-clinical evidence, or after demand falls for several periods, suggesting that the
product is no longer economically or therapeutically viable. In both cases we assume that the choice is not taken by the
firm.

31Variations on the logit model are commonly used to describe the pharmaceutical market. Duso et al. (2014) and
Stern (1996) use a two-level nested logit model to model demand for oral anti-diabetics and a set of four therapeutic
classes (gout, sedatives, minor tranquilizers, and oral anti-diabetics) respectively. Dunn (2012) uses a random-effect
logit model (micro-BLP) to describe the market for anti-cholesterol drugs using individual data. In our case, we found
that adding a more sophisticated nesting structure did not substantially improve model fit (we experimented with
adding an upper level at the ATC4 level or at the market level, separating the outside option from all other products).
We did not have enough data to implement a random-effect logit model.

32For details on the definition and construction of therapeutic classes, see the Online Appendix.
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patent-holder or main manufacturer), non-originator brand (usually a parallel traded product),
and generic. All the products in the main sample of analysis are originator brands. The utility of
consumer `, in country j, from consuming drug i (molecule m), belonging to therapeutic class κ,
in year t is given by

ui(m,κ)`(j)t = δijt + νi`t (1)

To obtain more realistic substitution patterns we also add a nesting structure at the molecule level.
The error term νi`t is parametrized as

νi`t = (ζm,κ + (1− σκ) ε i`t)

where m indicates the molecule of drug i, σκ lies on the unit interval, ε i`t is distributed according to
a standard Extreme Value Type 1 distribution and ζm,κ is an error term whose distribution satisfies
the property that νi`t is distributed according to an Extreme Value Type 1 distribution as long as
ε i`t is also EV1 (Cardell, 1997).33

We parametrize δijt to incorporate two important empirical features of drug demand in our
data: heterogeneity in preferences across countries, and growing demand over time. Demand for
drugs can differ substantially across countries because of heterogeneity in prescribing guidelines,
incidence of disease, and patient preferences. Moreover, possibly because drugs are generally
considered experience goods (Crawford and Shum, 2005), most products experience increasing
demand over their life-cycle as both patients and providers learn about new therapies.

We do not include a coefficient for price, since we do not observe the price that patients pay.
Instead, we include realized demand as a control in the price function, implicitly assuming that
any relationship between price and volume sold is mediated by the government. In general, pa-
tients in European countries only pay a fraction of the cost of prescription drugs, so any degree of
price elasticity that is picked up in the data is likely driven by the government.34

Our specification for δijt is

δijt = αij + βiageit + ηiNFijt + ξijt (2)

αij captures a country-specific preference for each drug, which could reflect differences in prescrib-

33For the nested logit model to make sense, σκ must lie on the unit interval. We do not implement this restriction in
the estimation, but instead opt to abandon the nesting structure in favor of a simple logit whenever the parameter falls
outside the limits set by the theory.

34All European governments provide universal health insurance coverage. Cost-sharing for drugs tends to be very
low. Drugs administered in an inpatient setting are usually completely free. Cost-sharing of outpatient prescription
drugs is disciplined by a variety of regulations that weaken the relationship between the price paid by the government
and that paid by the patient. In a few countries outpatient drugs are also completely free (Netherlands, Scotland). Some
countries use copays that are common to all drugs, regardless of price (Austria, Germany, Ireland, Italy, UK). Others
have coinsurances but relatively low caps on the amount that each patient can spend each year/month (Belgium,
Finland, Spain, Sweden). Finally, countries that have coinsurances without caps either have low coinsurances for the
most valuable products (France, Greece, Poland), or allow for a variety of exemptions to protect sick and low-income
individuals (Denmark, Portugal) (Barnieh et al., 2014; Panteli et al., 2016; Thomson and Mossialos, 2010).
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ing guidelines or disease burden.35 The βi coefficient allows for the possibility that patients and
physicians might learn about new drugs over time. We measure age starting with the approval
date of the drug.36 For non-originator products we also keep track of the number of selling firms
as a separate control variable NFijt.37 Finally, we add a drug-country-year random shock, ξijt, so
that the model can fit the data.

Inverting market shares (and normalizing the utility of the outside option to 0) yields the stan-
dard estimating equation for nested logit models:

ln
(

sijt

s0jt

)
= αij + βiageit + ηiNFijt + σm ln

(
sijt

smjt

)
+ ξijt (3)

where s0jt is the share of the outside good, and sijt and smjt are the market share of the product,
and the overall market share of the molecule nest respectively.38

We denote the demand function generated by this model as Dijt

(
St, ξκ

jt

)
, where ξκ

jt =
{

ξijt
}

i∈κ

is the vector of shocks for all products in therapeutic class κ.

4.2 Price-Setting Equation

Drug prices are set in negotiations between firms and governments. The exact form of the these
negotiations is hard to capture in an explicit model. Presumably, the government is trying to
reconcile several goals, such as providing access to valuable medications and rewarding costly
innovation, while at the same time facing spending constraints. Since we do not have any infor-
mation on the government’s objective function we opt for a more agnostic approach, and model
prices using a flexible control function.

Our price-setting equation includes two components. The first component is what we call
government price, p

gov
ijt . This is the price that is agreed upon between the firm and the government

in the absence of reference pricing. We write the government price as a function of product and
country fixed effects, as well as three additional control variables that are meant to capture the
potential effect of some of the other price-control policies implemented by the government. As
a first control we include an indicator for whether the firm has headquarters in country j. Kyle
(2006) shows that this variable is important to determine probability of launch; we include it to
check whether we can detect a significant effect on price. As a second control we include a flexible
function of the number of other molecules available in the same market. There are several reasons

35Even though the impact of disease burden is mostly reflected through market size, therapeutic classes can some-
times encompass large clusters of disease. For example, oncologics are divided in three large therapeutic classes (tar-
geted therapies, cytotoxics, and hormonal therapies).

36An alternative definition of age could start counting from the year in which a product was launched in a specific
country. Our prior is that information about a drug can spread to countries even if that product is not yet available. As
a robustness check, we estimated the model using country-specific age, obtaining very similar results.

37Virtually all originator products are sold by a single firm in each country, though the firm is not necessarily the
same across countries. However, most molecules face multiple brand and generic competitors, which we aggregate in
order to avoid excessive entry and exit.

38See Appendix A.1 for the derivation. We think of the outside good as an aggregate of non-drug therapies (doctor
visits, surgery, etc.) or drugs in other classes.
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why this variable should matter, all of which suggest it should have negative sign: the availability
of alternatives should decrease the additional welfare generated by a drug, competitive pressure
could bring prices down, and finally, governments sometimes benchmark prices to the lowest
price available within a group of substitutable drugs. As a third control we include total realized
demand for the drug. Intuitively, the government might react to high prices by steering patients
towards cheaper options. Governments also make widespread use of payback policies aimed at
preventing budget overshooting (Carone et al., 2012). Demand for drugs has an idiosyncratic
component (in the real world as in the model), but prices have to be agreed upon in advance,
which can lead to costly unexpected spending. Hence, we conjecture that governments may react
by establishing price volume schedules that include downward adjustments to prices for drugs
with higher demand.

The specification of the government price is

p
gov
ijt

(
Dijt

(
St, ξκ

jt

))
= θi · γj · exp

(
βZZijt + βD ln

(
Dijt

(
St, ξκ

jt

)))
(4)

where θi and γj are the product and country fixed effects, Zijt is the matrix of controls, and

Dijt

(
St, ξκ

jt

)
the realized demand, which depends on the random shocks of the products in class

κ: ξκ
jt =

{
ξijt
}

i∈κ
. We interpret this equation as a price-schedule, rather than a set list price.

The second component of the price-setting equation is the reference price. The reference price is
not directly observed, but reference price functions Fref

jt and baskets Rjt are reported by various
sources.39 Nonetheless, some details regarding the implementation of these functions require
additional assumptions. In particular, we need to establish how soon governments can see the
price schedules that have been set in other countries, and what is the right volume at which to
evaluate the price schedules when calculating the reference. We assume that governments see
prices with a 1-period lag, and apply the volume from the home country in the current period to
the price schedules used in the reference formula.40 Therefore, the reference pricing function that
we implement empirically is given by

pref
ijt
(
St, Dijt (·)

)
= Fref

jt

({
pikt−1

(
St, Dijt (·)

)}
k∈(Rjt∩Eit−1)

)
(5)

where Eit−1 is the set of countries where product i is sold as of time t− 1 (this set can be obtained
from information in St).

To combine these two components we assume that whenever the governments observes a
reference price that is inferior to the government price, the equilibrium price is set as a weighted

39Figure 1 shows the reference baskets and prices for 2012. See the Online Appendix for more details on reference
functions in previous years, and on the exact sources of reference price functions and baskets.

40For the volume adjustment, there are two natural options: the price schedules could be evaluated at the volume
sold in the referenced country, or in the home country in the current period. The first option implies that each country
references the observed list prices from the previous period. The second option is to evaluate the price schedules at
the volume sold in the home country in the current period. This option implies that each country references the price
schedule. We experiment with both options and find the second one to be more accurate. It provides a better fit with
the data, and is more aligned with the way reference pricing is applied in practice according to informal conversations
with industry insiders.
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average of the government price and the reference price. We let the weight be country-specific
in order to capture eventual heterogeneity in the application of reference pricing guidelines. The
overall price-setting equation is then given by

pijt
(
St, Dijt (·)

)
=

p
gov
ijt

(
St, Dijt (·)

)
if pref

ijt (·) ≥ p
gov
ijt (·)(

1− µj
)

p
gov
ijt

(
St, Dijt (·)

)
+ µj pref

ijt

(
St, Dijt (·)

)
if pref

ijt (·) < p
gov
ijt (·)

(6)

Identifying the Impact of Reference Pricing Before moving on to the dynamic model, we briefly
discuss the variation in price that allows us to identify the impact of reference pricing. Our iden-
tification strategy is based on two key elements: the functions that each country uses to calculate
the reference pricing benchmark, and the asymmetry in the application of reference pricing that
comes from the assumption that reference price only matters if it is below the government price.

We illustrate how these assumptions are reflected in the data by looking at a specific exam-
ple: the drug Abacavir (brand name Ziagen, marketed by ViiV Healthcare, a UK-based company).
Abacavir is an important antiretroviral therapy used to treat HIV-positive patients. It was ap-
proved in July 1999, and lost patent protection in 2014. It is currently included in the WHO List of
Essential Medications.

Figure 5 displays the order of entry observed in the data. The launch sequence is fairly typical:
shortly after the approval date the product is launched in a large set of high- and middle-income
countries. Poland, a low-income country with a large population, is part of this initial group
as well.41 Subsequent launches are scattered, but occasionally grouped together. Bulgaria and
Czech Republic receive the product in 2003, about four years after the initial approval, followed
by Lithuania and Romania in 2005, Hungary in 2006, and Slovakia in 2008. As of December 2012,
the product was still not available in Latvia and Estonia.42

We look at price trends for Abacavir in various countries in Figure 6. We compare prices in
France and Germany first (6a). ERP rules in France state that reference pricing should be ap-
plied at launch, and then updated on a yearly basis, but only starting five years after the original
launch. This discontinuity allows us to observe price differences in a quasi-event study setting.
The price in Germany is fairly constant over time. The price in France is also constant for a couple
of years, but quickly falls to the level of the reference price between 2005 and 2007 (the product
was launched in the first months of 2001, which means that the price was probably set in late 2000,
and the reference price would first be updated at some point in 2005).

To compare two countries that use ERP policies, but appear to put different emphasis on them,
we look at Greece and Switzerland (6b). The graph shows that the Swiss price is above the ref-
erence price benchmark, so our model will predict that reference price should have an effect on
the price. However, there is no apparent correlation between the two lines. In fact the Swiss price

41This is also not uncommon. Very often the product will be launched in a couple of low-income countries during
the first wave of launches. Those countries tend to be the ones with the largest demand for the product.

42Two drugs that use Abacavir in combination with other molecules were launched in Latvia in 2004 and 2006.
Estonia does not have any recorded sales of Abacavir or associated combination therapies in our data.
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even seems to diverge from its reference price after 2007. In contrast, Greece comes in below the
reference price until 2009. Hence, the model would interpret prices between 2002 and 2009 as
measures of the government price. Those prices are constant, with the exception of the first ob-
served price in 2002, and a brief interlude of approximately 6 quarters between 2007 and 2008 in
which the price was momentarily cut. However, in 2010, when the reference price falls, so does
the Greek price, suggesting that reference pricing guidelines are followed closely, at least in this
case.

These example illustrates how the model determines the impact of reference pricing. The
model will predict a government price for Abacavir for each country to match instances when
the reference price does not bind. When the reference binds, the degree to which prices move in
the same direction as the reference price will determine whether µj is close to 1 (as in the case
of Greece), close to 0 (as in the case of Switzerland), or somewhere in between (as in the case of
France).

4.3 Dynamics

We now turn to the dynamic aspect of the model. The firm operates in a single-agent, discrete-
time, finite-horizon environment. Its goal is to maximize profits by choosing the order and timing
of entry in each country, conditional on demand and price primitives (over which it has perfect
information).43

Firms face stochastic shocks in their launch sequence in the form of random entry delays. For-
mally, a delay shock is a binary Bernoulli random variable ρijt, with country-specific parameters
ψj, independently distributed across countries, years, and drugs. If ρijt = 1, then drug i cannot
enter in country j until period t + 1 (when a new shock is drawn). These shocks help capture
variation in delays that cannot be explained through the reference pricing channel. Delays caused
by ERP will arise when firms voluntarily decide to withhold one of their products because they
expect that doing so will result in higher overall revenues. Launch delays that occur for any other
reason will be soaked up by delay shocks.44

Each period unfolds as follows. At the beginning, the firm chooses a set of countries where it
will send entry applications. We represent this action as a binary vector Alt =

{
aijt
}

j∈Ni ,i∈Il
where

aijt = 1 whenever the firm chooses to launch product i in country j. More generally, we denote a
strategy for firm l in the extended-form game as a map

Alt : S → {0, 1}Tl−t+1

where S is the set of all possible values of the launch sequence Sl , andAlt generates a set of binary

43Notice that revenue and profits are equivalent, since the model assumes that all costs are zero.
44The main source of delays other than ERP is probably the time required to review price and reimbursement applica-

tions and to complete price negotiations. However, other sources may exist as well: firms may need to wait for certain
negotiations to be resolved before engaging in additional launching because of capacity constraints to their negotiating
workforce; or countries may block the entry of products they consider potentially dangerous for a number of years.
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vectors Alt with an action profile for each period until Tl .45 The launch sequence of the firm as of
period t represents the state variable of the problem. While the launch sequence of other firms has
the potential to affect expected revenue (by stealing market share and potentially affecting prices),
we assume that strategies are not conditional on the actions of other firms.46 Afterward, the vector
of binary shocks for the current period

{
ρijt
}

is realized, determining the new value of the state
variable. After observing the shocks, governments set price schedules, and finally, products are
sold and profits are realized.

The firm’s problem at time t is to pick a strategy to maximize

Vt (Slt−1, S−lt−1) =

max
Alt={Alτ(Slτ−1)}T

τ=t

∑
Sl

(
∑
S−lτ

(
T

∑
τ=t

βτ−tΠτ (Sl , S−l)

)
· P (S−l | S−lt−1,A−lt)

)
· P (Sl | Slt−1,Alt) (7)

where β is the discount factor (which we set equal to 0.98), Πτ (Sl , S−l) is the expected period profit
of the firm, for a given realization of the launch sequence (both the own sequence and the sequence
of competitors), and P (Sl | Slt−1,Alt) and P (S−l | S−lt−1,A−lt) are the probabilities of Sl and S−l

conditional on Sl and Slt−1, for given strategies Alt and A−lt of the firm and its competitors.
The expected period payoff is defined as

Πτ (Sl , S−l) = ∑
i∈Il

Eξr
jt

[
∑

j∈Slτ

pijτ
(
St, Dijt (·)

)
Dijτ (·)

]
(8)

The expectation is taken over the possible realizations of the stochastic error in the demand system.

5 ESTIMATES OF DEMAND AND PRICE PRIMITIVES

In this section we describe how we carry out the estimation of demand and price primitives, and
briefly discuss results and model fit. Demand estimates are in 5.1, while price estimates are in
5.2. Finally, in 5.3 we use these estimates to simulate and compare the expected revenue of entry
sequences where products are launched everywhere right away to sequences that delay launches
in certain countries. We find that firms earn higher revenue when their products are delayed in
Eastern European countries, but find no evidence that delays in Western Europe lead to higher
revenue.

5.1 Demand Estimation

Equation 3 provides the basis for estimation. The independent variables can be easily constructed
from the IMS data, with the exception of age, for which we use approval date from the EMA or the

45We call this a game because we treat Nature as a player whose actions (i.e. the delay shocks) are stochastic.
46This assumption is necessary to obtain identification from the model. Allowing firms to react to each other is

desirable, but makes counterfactual scenarios hard to compute, since our data does not allow us to make inferences
about reactions off the equilibrium paths.
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Heads of Medicines Agencies.47 To measure market size we use data from the Global Burden of
Disease Study. We use a map from ATC4 to GBD indication constructed by Costinot et al. (2016) to
calculate the number of patients that might potentially use drugs in a certain therapeutic class.48

We then scale up the number of patients to obtain a number of standard units and construct market
shares from data on sales volumes.49

Two potential issues arise. First, ln
(

sijt
smjt

)
(i.e. the within-molecule market share of product i) is

correlated with the error term ξijt, so instruments are needed in order to recover a consistent value
of the associated coefficients. We use the number of years since the patent on molecule m expired,
the average market share of parallel traded products for other molecules within the same country,
and the number of other firms selling the same molecule.50 These variables are meant to capture
the impact of the two potential channels of within-molecule competition: generic products (for
off-patent molecules), and parallel traders (for on-patent products).

The second issue is that firms might be able to observe ξijt prior to entry. This leads to the
classic selection problem that is common to many IO settings: countries where entry is recorded
would have unobservably high values of ξijt, leading to a biased estimator. In practice however,
there are several attenuating circumstances that suggest selection is a second-order concern in
this case. First, firms never exit voluntarily, so we do not need to worry about exit selection.
Second, since we control for drug-country-specific preferences, our model will pick up the average
preference of each country. The only remaining possibility is that demand prior to entry could be
lower than our model prediction, because firms wait until demand reaches a certain threshold
before entering. If that were the case, we would expect our αij coefficient to be biased upwards.
In the dynamic estimation, a higher αij coefficient makes firm i more likely to enter in country
j. Therefore, this type of selection bias would lead us to underestimate the amount of strategic
delays.51 We conclude that if unobserved selection does exist, it should act in the direction of
preventing us from finding a result.

Results We estimate a separate equation for each of the 109 therapeutic classes that contain at
least one of the products in our main sample using linear regressions with instruments.

The coefficients of the model itself are not very informative, so we discuss how the model
fits the data. Figure 7 plots the distribution of R2 coefficients from each regression. Virtually
all regressions achieve a coefficient of determination of at least 0.8. This is because demand for

47We manage to match over 90% of molecules in our main sample to an approval date. In the handful of cases for
which we do not have a match, we use the fifth-earliest launch date from the IMS MIDAS database as a proxy for the
approval date. In the sample we were able to match, the fifth-earliest launch occurs after the approval date in 95% of
the cases.

48We thank the authors of the paper for sharing the map with us ahead of publication.
49The scaling number is chosen to be the smallest number such that the outside option has at least 1% market share

in all countries and years. In that sense, our estimate can be thought of as a lower bound on the actual market size. We
pick a different scaling number for each therapeutic class.

50We identify as parallel traders all non-originator firms who sell a product sharing the same molecule and product
name as the original product.

51If potential demand were higher before entry, that might lead us to overestimate delays due to strategic behavior.
However, this type of selection runs counter to the main intuition for the selection mechanism in this case.
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all drugs tends to be fairly well-behaved, without many fluctuations. The main exception is flu
medications (R2 = 0.6). Since the flu is a highly seasonal illness, with stronger strains in specific
years, demand for these products tends to vary a lot year-to-year in a way that is hard for our
model to capture.52

Figure 8 plots predicted shares against actual shares for products in the main sample. The
predicted shares of dominant products (i.e. products whose market share is greater than 0.6) tend
to be underestimated by the model. However, the overall average market share ends up being
quite close to the overall average (it is in fact slightly overestimated, by 0.02%).

5.2 Price and ERP parameters

Equation 6 provides the basis for price estimation. To fit the model we assume that prices are
subject to measurement error. There almost certainly is some amount of measurement error in
our data: IMS collects their data from surveys of pharmacies and hospitals, and the prices we
match are yearly averages. For simplicity, we do not include any additional sources of error.53

Since our price model has a multiplicative function, we also assume that the measurement error
is multiplicative (i.e. additive in logs). Let pijt be the model-predicted price, and po

ijt the observed
price. Then

ln
(

po
ijt

)
=

ln
(

p
gov
ijt (·)

)
+ ηijt if pref

ijt (·) ≥ p
gov
ijt (·)

ln
((

1− µj
)

p
gov
ijt (·) + µj pref

ijt (·)
)
+ ηijt if pref

ijt (·) < p
gov
ijt (·)

We assume that ηijt is i.i.d. across countries, drugs, and years.
Our estimation routine searches the vector of parameters that minimizes the difference be-

tween the model prediction and the data. Since the price function includes a fixed effect for each
product and country (there are 481 distinct products in our main sample), the total number of pa-
rameters is quite large, and estimation matching log price levels would be quite slow. To improve
the speed and efficiency of the procedure we match log differences in price. The key property of
this ratio is that it does not depend on the product fixed effect θi. We state the result here as a
Theorem, and provide a formal proof in Appendix A.2).

52The other outlier in the graph is a class called “N7D9|OTHER ANTI-ALZHEIMERS” which contains a single
molecule, Memantine (brand name Namenda), which is used to treat Alzheimer’s disease in people who are intolerant
to cholinesterase inhibitors.

53Introducing any other source of error in the price would potentially lead to insurmountable estimation issues due
to the propagation of this error through the reference pricing channel.
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Theorem 1. Let pijt (·) be defined as in equation 6. Then, for any j, k ∈ Ni

ln
(

pijt (·)
pikt+1 (·)

)
=



ln
(

γj·exp(βZZijt+βD ln(Dijt))
γk ·exp(βZZikt+1+βD ln(Dikt+1))

)
if pref

ijt (·) ≥ pgov
ijt (·)∧

pref
ikt+1 (·) ≥ pgov

ikt+1 (·)

ln

(
γj·exp(βZZijt+βD ln(Dijt))

(1−µk)γk ·exp(βZZikt+1+βD ln(Dikt+1))+µk p̃
ref
ikt+1(·)

)
if pref

ijt (·) ≥ pgov
ijt (·)∧

pref
ikt+1 (·) < pgov

ikt+1 (·)

ln

(
(1−µj)γj·exp(βZZijt+βD ln(Dijt))+µj p̃

ref
ijt (·)

γk ·exp(βZZikt+1+βD ln(Dikt+1))

)
if pref

ijt (·) < pgov
ijt (·)∧

pref
ikt+1 (·) ≥ pgov

ikt+1 (·)

ln

(
(1−µj)γj·exp(βZZijt+βD ln(Dijt))+µj p̃

ref
ijt (·)

(1−µk)γk ·exp(βZZikt+1+βD ln(Dikt+1))+µk p̃
ref
ikt+1(·)

)
if pref

ijt (·) < pgov
ijt (·)∧

pref
ikt+1 (·) < pgov

ikt+1 (·)

(9)

where p̃ref
ijt (·) is such that pref

ijt (·) = p̃ref
ijt (·) · θi, and p̃ref

ijt (·) is not a function of θi.

The proof of this Theorem hinges on showing that the reference price can be written as a linear
function of the drug fixed effect. Intuitively, this result follows from the fact that the reference
price can be written as a weighted average of government prices, which are all linear functions of
the drug fixed effect.

Since log differences do not depend on the product fixed effect θi, this strategy drastically cuts
down on computation time. We match ln

(
pijt

pikt+1

)
, where j and k are two (randomly selected)

countries, and we look at the difference in the price of product i in these two countries over con-
secutive periods.54 We compute the model predictions using equation 9. The estimating equation
in differences is

ln

(
po

ijt

po
ikt+1

)
= ln

(
pijt (·)

pikt+1 (·)

)
+ ηijt − ηikt+1

Our routine minimizes the sum of the two error terms:

O
(
γj, µj, βZ, βD

)
= ∑

i,j,k,t

[
ln
(

pijt (·)
pikt+1 (·)

)
− ln

(
po

ijt

po
ikt+1

)]2

(10)

We restrict µj to the unit interval. A negative value of µj does not make sense; a value of µj

greater than 1 is theoretically possible, but raises the possibility of negative prices in counterfactual
predictions. Once we have obtained estimates for

(
γ̂j, µ̂j, β̂Z, β̂D

)
, we plug them into the price

equation to calculate θ̂i.

54We compare prices of different countries to avoid differencing out the country fixed effect. In order to minimize the
number of observations lost through the differencing process, we occasionally consider pij2012

pik2002
as a moment. By doing

so we only lose one observation per drug, instead of one observation per drug-country.
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Results We report price estimation results for the vector of parameters
(
γ̂j, µ̂j, β̂Z, β̂D

)
. Since

our estimation is in logs, we report coefficients for ln
(
γj
)
, which are more easily interpretable

as proportional changes in relative terms with respect to a benchmark (in this case, the omitted
coefficient used as a benchmark is ln (γGERMANY)).

The first column of Table 2 shows the coefficients for ln
(
γj
)
. The point estimates roughly

match our intuition: countries with lower income tend to pay lower prices, with a couple of ex-
ceptions. Poland and Hungary have higher coefficients than many other countries with higher
income. However, both countries use the minimum price in Europe as their reference, and the
coefficients on µj for both are very close to 1. This suggests that the government is occasionally
willing to grant higher prices, knowing that reference rules will bring them down very quickly.55

The second columns shows estimates for µj, which is the coefficient measuring how strictly
each country adheres to its own ERP guidelines. We observe significant heterogeneity across coun-
tries in this respect. Seven countries have coefficients above 0.9, suggesting that reference pricing
guidelines are followed closely. Four other countries (including Italy and Spain) have coefficients
above 0.8. The remaining 8 countries who use ERP all have coefficients below one-third, which
suggests that they either do not follow their guidelines all that closely, or that they apply them only
to selected drugs. In particular Switzerland does not appear to use reference pricing at all, with
a coefficient that is almost exactly zero. We are not able to identify a coefficient for Slovenia be-
cause the model estimates that its government price is always below the reference price (Slovenia
references Austria, France, and Germany, which are all countries with much higher price levels).

Almost all the coefficients on the control variables in the welfare function behave as expected.
Higher quantity sold is associated with lower prices. Prices tend to be approximately 4% higher
in countries where the firm has headquarters. Finally, having a higher number of competitors in
the same class is associated to lower prices, though the relationship appears to be nonlinear and
noisy.

One key result that emerges from the analysis is that the price level (as indicated by ln
(
γj
)
) in

Western European countries that follow reference pricing closely is only marginally higher than
the price level of Eastern European countries. This suggests that in the current equilibrium firms
may be under pressure to keep prices higher in Eastern European countries to reduce the size of
the externality generated by ERP.

5.3 Simulation-Based Evidence of Optimal Delays

Our price estimation results suggest that ERP does indeed affect equilibrium prices, but are the
externalities strong enough to generate delays? We test whether this is the case by simulating firm

55Luxembourg and Norway (the two richest countries in Europe) are also outliers. Norway is relatively isolated in
the reference pricing matrix, because it is only referenced by Finland. Hence granting a lower price to Norway might
carry relatively little consequences for firms. This effect is not captured explicitly by our model, but is incorporated in
the country fixed effect. Luxembourg is harder to explain, though its status as a relatively small countries might give
rise to all sort of irregularities and exceptions. Many drugs do not even record sales in Luxembourg, so it is possible
that selection might play a role here.
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revenue from a variety of strategies. We do not include delay shocks in this simulation, since all
we are interested in is establishing whether or not the incentive for strategic delays exists.

We simulate the expected payoff of two sets of strategies, and compare it to the payoff obtained
when launching everywhere right away. The first set of strategies, denoted as Akr, consists of
withholding a single product from country k for r periods.56 Formally, Akr

lt =
{

Akr
lτ (Slτ−1)

}
, with

Akr
lτ (Slτ−1) =

{
akr

ijτ

}
i∈Il

, and

akr
ijt =

1 if j 6= k ∨ (j = k ∧ τ < t + r)

0 if j = k ∧ τ ≥ t + r

We simulate the expected revenue of these strategies for all the 87 drugs in our dynamic esti-
mation sample, and calculate the fraction of drugs for which delaying in country j is optimal for
at least one value of r.57 Figure 9 plots the results. We find that these types of delaying strategies
are optimal for all Eastern European countries in at least some cases. Only three countries outside
of Eastern Europe would experience delays according to this simulation: Austria, Belgium, and
Luxembourg. Luxembourg does not have particularly low prices, but it’s a very small market, so
it’s not surprising that for some drugs it would be optimal to exclude it. The model also predicts a
delay for one drug in Austria, and one in Belgium. In both cases, the drug in question was indeed
launched with a long delay in both countries, and earned a very small amount in sales. Even
though both Belgium and Austria tend to have high price levels relative to most other countries,
they can affect the prices of countries with higher price levels (for example Ireland).58

Figure 9 is remarkably consistent with the reduced-form patterns described in Section 3.2 (Fig-
ure 2). No information about delays or launch sequences was used in generating the figure, which
is purely based on price and demand estimates. This confirms the intuition that firm behavior
adheres to the incentives laid out by the regulatory environment, and supports the idea that our
model can capture the relevant features of this market.

In the next set of strategies, we focus on Eastern Europe as a block, and simulate revenue from
strategies that delay entry in all Eastern European countries.59 Formally, let NE denote the set of

56When a firm owns multiple products in the same therapeutic class, we test strategies where only one product is
withheld and other products are launched immediately.

57In some cases, drug i is already in country j in 2002, which makes it impossible to simulate revenue under a
counterfactual delay. We exclude those drugs from our calculations.

58Delaying entry in Romania and Bulgaria is optimal for a surprisingly low number of drugs, given our price and
demand estimates. This is because prior to acquiring EU membership in 2007, Bulgaria and Romania where only
referenced by a few other Eastern European countries. Thus, our model predicts that entering in Romania and Bulgaria
only has a small effect on prices prior to 2007. In the data, we do not find a significant difference in the average delays
before and after EU entry in these two countries. This is not too surprising however, as entry in the EU also removes
several bureaucratic obstacles that might have generated idiosyncratic delays. Hence, the net effect of EU membership
on launch delays could be close to 0.

59As with the previous simulation exercise, sometimes drug are already available in some Eastern European coun-
tries. We delay entry only in countries where the product has not already entered.
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Eastern European countries. Then AEr
lt =

{
AEr

lτ (Slτ−1)
}

, with AEr
lτ (Slτ−1) =

{
aEr

ijτ

}
i∈Il

, and

akr
ijt =

1 if j /∈ NE ∨ (j ∈ NE ∧ τ < t + r)

0 if j ∈ NE ∧ τ ≥ t + r

We plot the distribution of optimal delays for our 87 drugs in Figure 10. We find that for
around 20% of drugs, delaying in all Eastern European countries as a block is preferable.

These simulations suggest that firms are better off when their products are not available in
Eastern European countries right away. At the same time, we find almost no evidence that firms
have any strategic incentive to delay entry in countries in Western Europe (this includes even
countries with relatively lower income levels like Greece and Portugal).

6 DYNAMIC ANALYSIS

With estimates for demand and price primitives in hand, we now turn our attention to the parame-
ters governing idiosyncratic delays. These parameters, which may differ across countries, capture
the probability that an application may be delayed. Traditional estimation methods for dynamic
entry models are unfeasible in our case: the complicated net of price externalities prevents us from
deriving an analytic solution, and the total number of countries and periods we consider means
that the state space is too large to solve the problem numerically. Finally, the structure of delay
shocks generates an additional identification challenge on top the curse of dimensionality: firm
strategies are unobserved. In the data, we see firms entering, but not when applications are sent.
In other words, in the observed launch sequences, an application that was not sent is observation-
ally equivalent to an application that was rejected. To overcome these obstacles we approach the
problem using a partial identification approach.

We use two sets of moment inequalities to construct bounds on the probability of idiosyncratic
delays. The first set of moment inequalities uses data on entry and approval dates and exploits
the intuition that firms can only apply after they have received marketing approval for a product.
Hence, the average probability of an idiosyncratic delay must be less than or equal the overall
probability of delay implied by the data (notice that these inequalities can only recover an upper
bound). The second set of inequalities uses information contained in the expected revenue of the
observed entry sequence. The estimator rejects parameter values for which we can find strategies
that yield higher expected revenue than what firms obtained in the data.

In constructing the second set of moment inequalities we introduce a novel methodological
contribution. In our setting we cannot rely on the model to compute the expected revenue of the
firm’s strategy, because the strategy is unobserved. At the same time, moment inequalities that
use the expected revenue of the observed entry sequence may not hold: some firms may earn less
(or more) than their expectation depending on the realization of the delay shocks. We show that
we can aggregate outcomes across drugs to build inequalities based on aggregate moments. In
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other words, our moment conditions are based on the average expected revenue across all drugs
in our sample.

The rest of this section is divided in three parts. First, in 6.1, we derive an upper bound using
moment inequalities based on entry and approval data. Next, in 6.2 we lay out the theoretical
framework for the moment inequalities that use expected revenue. Finally, we discuss the empir-
ical implementation of this latter methodology and our results in 6.2.

6.1 Moment Inequalities based on Entry Data

We use entry and approval data to recover an upper bound on the delay parameters. Our dis-
tributional assumption on the random delay shocks is that in each period the probability of an
application for entry in country j being delayed is ψj. Let

(
1− ψ̄j

)
be the probability that product

i will enter in country j in a given year. This is the combination of the probability that the firm will
apply, times the probability of the application being accepted. Hence, for all j, ψ̄j ≥ ψj.

To estimate ψ̄t we can simply calculate the probability of a delay by using data on approval
dates and launch dates: suppose that a product approved in year 0 enters France in year 2. Then
we are going to assign an expected probability of entry of 1/3: the product had three opportunities
to enter — in years 0, 1, and 2 — and registered one success, in year 2.

Figure 11 plots the coefficients ψ̄j for all European countries, together with confidence inter-
vals.60 We estimate a single coefficient for Eastern Europe — denoted as ψEU10 — for consistency
with the moment inequality estimation (see the next section).61 The range of these parameters
varies between 0.2 and 0.6 for Western European countries, while the coefficient for Eastern Eu-
rope is 0.669.62

6.2 Moment Inequalities based on Revenue Data

Theoretical Derivation

Identification in moment inequality is generally based on the idea that the firm’s strategy contains
some information about the true value of the unknown parameter of a model. In particular, the
strategy of the firm will only be optimal for a certain range of values of the parameter. For values
outside that range we should be able to find strategies that would earn higher revenue, which in
turn allows us to rule those values out.

In our setting firm strategies are unobserved (e.g. if we observe entry in France with a 2-year
delay, we don’t know whether the firm applied starting in year 0, year 1, or year 2). As a result, we

60We follow instructions laid out by Brown et al. (2001) in building approximate confidence intervals for these pa-
rameters.

61EU10 is the shorthand for Eastern European countries that are part of the European Union. In our data we have 8
Eastern European countries (instead of 10), because we are missing sales data for Czech Republic and Slovakia.

62One could also obtain a tighter bound by choosing a partition P of the set of all drugs, calculating a subset-specific
upper bound ψ̄

p
j for all p ∈ P, and choosing ψ̄

p,min
j = minp ψ̄

p
j to be the upper bound. We show in the Online Appendix

that doing so can yield a lower upper bound for ψ̄j. However, we only include the estimate from the full sample in our
main results, as this exercise relies heavily on the assumption that ψj is constant across drugs.
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are unable to compute the expected revenue of the firm’s observed strategy for arbitrary values
of the unknown parameter. However, in the data we can observe the revenue earned by the firm
for the true value of the parameter. We use this information to obtain identification and build
inequalities in a way that is similar to the rest of the literature: we compare the revenue earned
by the firm in the observed data, and calculate counterfactual revenue under alternative strategies
for arbitrary values of the parameter.

The loss of information that comes from not observing the optimal strategy means that our
inequalities will not necessarily hold for individual firms: the revenue we observe depends not
only on strategies, but also on the realization of the delay shocks. If a firm incurs in longer-than-
expected delays, this will decrease their revenue and we may end up finding a violation of the
inequality even at the true parameter value. To address this issue, we aggregate across drugs
and instead match the average expected revenue across all firms. Doing so will remove the noise
generated by the realization of the delay shocks.

Formally, let A?
lt denote the optimal strategy of firm l starting in period t. By definition, A?

lt

is the solution to the dynamic programming problem of the agent as expressed in equation 7. In
other words, for all possible strategies A′lt, A?

lt satisfies

Ṽt (A?
lt; Slt−1, S−lt−1) ≥ Ṽt

(
A′it; Slt−1, S−lt−1

)
(11)

where

Ṽt (Alt; Slt−1, S−lt−1) = E

[
T

∑
τ=t

βτ−tΠτ (Sl , S−l)

∣∣∣∣∣Alt, Slt−1, S−lt−1

]
(12)

is the expected payoff of the agent conditional on playing strategy profile Alt (the expectation is
taken over the possible realizations of the launch sequences of all products, as in equation 7).

Under the assumption that firms maximize expected returns we can use equation 11 to build
“revealed preference” inequalities as in Pakes et al. (2015). In the data we observe a certain number
of firms with molecules in specific therapeutic classes (each firm-class combination constitutes one
observation for us, since molecules in different therapeutic classes do not affect each other). The
expected payoff of the observed launch sequence So

l of firm l starting at period t is

Vt
(
So

l , So
−l
)
=

T

∑
τ=t

βτ−tΠτ

(
So

l , So
−l
)

Notice that Πτ

(
So

l , So
−l

)
is an object that we can recover using simulation, since it only depends

on the shock ξκ
t =

{
ξκ

jt

}
. This error is unobserved by both the firm and the econometrician by

assumption.63 We recover the distribution of ξκ
t from demand estimation, and use it to simulate

ξκ
t .

We claim that the average of Vt
(
So

l , So
−l

)
converges to the average of the expected payoff of

each firm when playing the optimal strategy.

63There is no additional error from price since the residual is assumed to be measurement error.
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Theorem 2. For any ε > 0, we can find M′ such that

1
M

M

∑
i=1

(
Vt
(
So

l , So
−l
)
− Ṽt (A?

lt; Slt−1, S−lt−1)
)
< ε

for all M > M′.

We provide a rigorous proof of this Theorem in Appendix A.4 and only discuss the intuition be-
hind the result here. Notice that if firms are playing the optimal strategy, then the observed launch
sequences are draws from the probability distributionsP

(
Sl | Slt−1,A?

lt

)
andP

(
S−l | S−lt−1,A?

−lt

)
.

This distribution need not be the same for all firms: each may face a different initial state Slt−1,
and different demand or price primitives. However, since the random shocks used in the model
are independently distributed across drugs, we can apply a generalized version of the law of large
number for non-identical independent random variables to argue that the sample average across
firms converges to the average expected payoff.

Theorem 2 suggests that we can write moment inequalities based on the average payoff ob-
tained by the firms in our sample:

1
M

M

∑
i=1

Ṽt (A?
lt; Slt−1, S−lt−1) ≥

1
M

M

∑
i=1

Ṽt
(
A′lt; Slt−1, S−lt−1

)
(13)

The left-hand side of this inequality is approximated by 1
M

M
∑

i=1
Vt
(
So

l , So
−l

)
. To compute the right-

hand side we use simulation. The expected payoff of any deviation A′lt can be written as an
integral over the possible realization of the launch sequence Sl , holding S−l fixed 64

Ṽt
(
A′lt; Slt−1, S−lt−1

)
= ∑

S−l

∑
Sl

T

∑
τ=t

βτ−tΠ (Sl , S−l)P
(

Sl | Slt−1,A′lt
)
P
(

S−l | S−lt−1,A?
−lt
)

We approximate Ṽt
(
A′lt; Slt−1, S−lt−1

)
by simulating the distribution of P

(
Sl | Slt−1,A′lt

)
. For a

given guess of the parameter vector ψEU10, and for each drug i ∈ Il draw
{

νr
ijt

}nsim

r=1
and use them

to calculate simulated entry paths
{

Sr
l

}
. The average simulated payoff is

Vsim
t
(
A′lt; Slt−1, S−lt−1, ψEU10

)
=

1
nsim

nsim

∑
r=1

[
T

∑
τ=t

βτ−tΠ (Sr
l , S−l)

]

The difference between Ṽt
(
A′lt; Slt−1, S−lt−1

)
and Vsim

t
(
A′lt; Slt−1, S−lt−1, ψ0

EU10

)
— for the true

parameter vector ψ0
EU10 — is simulation error, which can be eliminated by choosing nsim large

enough, and the error in the realization of S−lt−1 (which is only one of many possible draws).

64We cannot simulate S−l because we do not observe strategies. However, each observation of S−l is drawn from

the probability distribution of P
(

S−l | S−lt−1,A?
−lt

)
, so when we average across firms, we will approximate the right

distribution. See the proof of Theorem 2 in Appendix A.4.
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When we aggregate across firms, the error in S−lt−1 will disappear for a large enough sample of
drugs.

We define empirical moment moment conditions as

µ
(
A′lt, ψEU10

)
= min

{
0,

1
M

(
M

∑
i=1

Vt
(
So

l , So
−l
)
−Vsim

t
(
A′lt; Slt−1, S−lt−1, ψEU10

))}

The estimation identifies a set ΨI of parameters that satisfy

ΨI =

ψEU10 : ∑
A′t

µ
(
A′lt, ψEU10

)
= 0


Empirical Implementation

Based on our simulation results, we assume that firms never optimally delay entry in Western
Europe (i.e. ψ̄j = ψj for all countries outside Eastern Europe). Since moment inequalities work
best with a small number of parameters we assume that the probability of delay is the same in
all Eastern European countries. This parameter captures the probability of incurring a delay in
Eastern European countries due to forces outside of the firm’s control. We estimate an identified
set for this parameter by building moment conditions based on equation 13, and checking what
range of parameters satisfies it for a series of possible strategies A′lt.

Calculating Vt
(
So

l , So
−l

)
and Vsim

t
(
A′lt; Slt−1, S−lt−1, ψEU10

)
does not require observing drugs

from their original launch, but it does require observing them until period Tl . Hence we perform
this analysis on the dynamic sample (see Table 1 for details).

We let our simulation analysis guide our choice of counterfactual strategies. For each drug i,
our counterfactual strategy delays entry in all countries where simulations suggest that doing so
would result in higher revenue. For firms that have more than one drug we simulate multiple
strategies where the entry sequences of all but one drugs are held fixed (as if they were owned by
another firm).65

Ex-ante, we expect these inequalities to be more effective in finding a lower bound on the
probability of an idiosyncratic delay ψ. To see why, assume that the expected revenue conditional
on playing the optimal strategy are monotonically decreasing in ψ (i.e ∂Ṽ(A?(ψ),ψ;·)

∂ψ < 0).66 Then, it
is impossible to find an alternative strategy A′ such that

Ṽt
(

A′, ψ′; Slt−1, S−lt−1
)
> Ṽt

(
A?

lt
(
ψ0) , ψ0; Slt−1, S−lt−1

)
65We also tested a variety of simpler strategies, such as applying right away in all countries, or applying a set number

of period before observed entry. These strategies yielded looser bounds.
66We do not have a formal proof of this statement. However, this is intuitively true: firms should be better off when

the probability of a delay is lower, as they have better control over which entry sequence will be realized. For example,
if the probability of delay were 0, the firm would be able to choose the profit-maximizing entry strategy. An increase
in the probability of delay would reduce the likelihood of achieving the profit-maximizing entry sequence, therefore
expected revenue would fall.
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for ψ′ > ψ0.67 It will still be possible to find A′ such that V (A′, ψ′) > V
(

A?
(
ψ0) , ψ0) for ψ′ <

ψ0.68

Our empirical results confirm this intuition: we find that our moment inequalities only provide
a lower bound on the probability of an idiosyncratic delay. The identified set ΨI that we generate
using these inequalities rejects values of ψEU10 lower than 0.416.

7 COUNTERFACTUALS AND POLICY ANALYSIS

In many cases, estimation using moment inequality precludes the ability to run counterfactuals. In
our case however, we are able to simulate an equilibrium strategy under an important alternative
reference pricing scenario: the elimination of ERP. In this scenario, regardless of the pricing policy
that is implemented as a replacement, the optimal solution is easy to derive: firms no longer
have any incentive to delay entry in any country, so they will apply for entry everywhere right
away. This scenario gives an idea of the welfare loss from reference pricing in terms of forgone
drug-years. We examine this scenario in 7.1 and find that removing ERP could accelerate entry in
Eastern European countries by up to 14 months.

The removal of ERP could be hard to implement in practice, as it would require all countries to
surrender part of their sovereign power to the European Union. Historically, governments have
been reluctant to do so. However we estimate that leaving ERP in place and paying firms to forgo
strategic delays would require a relatively small amount of money (around e20 million for the
average drug). This solution, which we briefly discuss in 7.2, could be easier to implement than a
complete overhaul of the pricing system in each country.

7.1 Delays in the absence of ERP

In the absence of ERP (and assuming that no other policy that limits price discrimination across
countries exists), the optimal strategy is for the firm to launch as soon as possible in all countries.
Hence, the firm will send entry applications to all countries as soon as the product is approved,
and the only delays in the model will arise through the bureaucratic delay channel.

This counterfactual is consistent not only with a situation in which ERP is ruled out by the Eu-
ropean Union, but also with any policy that places the responsibility to set prices with a European
authority, and out of the hands of individual countries. Many such policies have been indeed sug-
gested as a way to circumvent the effect of reference pricing. For example Towse et al. (2015) sug-
gest that various forms of tiered pricing could be implemented centrally by the European Union

67To see why, notice that by assumption V
(

A?
(
ψ0) , ψ0) > V (A? (ψ′) , ψ′) for all ψ′ > ψ0. Moreover, by definition

of A? (·), V (A? (ψ′) , ψ′) > V (A′, ψ′) for all ψ′.
68We could obtain an upper bound from data on expected revenue by showing that for a given value of ψ, no strategy

will ever yield expected revenue as high as what the firm obtained in the data. The problem is that the firm achieves the
highest possible expected revenue when playing the optimal strategy, and the reason we resort to moment inequalities
is precisely that we cannot compute this strategy. However, we can find functions of data and parameters that always
returns a value greater than the expected revenue under the optimal strategy. We describe this approach in the Online
Appendix, including an example of a function that satisfies these requirements, but that unfortunately only yields an
upper bound that is already ruled out from the moment inequalities that use entry data.
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to avoid delays in low-income countries. They propose Ramsey pricing and Value-Based Pricing
as possible candidates. The implication of our model is that the specific pricing rule does not mat-
ter, as long as cross-market externalities are eliminated (this would also involve imposing limits
on parallel trade, for example by carving out an exclusion for patent-protected pharmaceuticals).
Importantly this also implies that we do not need to rely on our pricing model to work out the
implications of this counterfactual. This is crucial as it is quite likely that such a large change in
the regulatory environment would also bring about changes in the level and variation of prices
across countries that our model might be unable to predict accurately.

Figure 12 shows the range of possible delays in Eastern Europe implied by our identified set
[0.416, 0.669] for ψEU10. The parameter at the upper bound of the interval implies that idiosyn-
cratic delays match observed delays. Under this scenario, the average drug should expect around
2 years of delay in each Eastern European country. At the lower bound of the interval, firms would
instead expect an average delay of around 8-9 months in these countries, a reduction of approx-
imately 63% in delays. A potentially useful comparison is what would happen if we assigned to
Eastern European countries the same delay parameter as the slowest Western European country,
which is Italy. Italy has a delay probability of 0.590. If ψEU10 took on this value, delays in the
absence of ERP would fall by 27%, or around 6 months in each country.

7.2 Policy Proposal: Pay for (no) Delay

One of the main obstacles that prevents the implementation of a pricing mechanism without refer-
ence pricing is the political will of EEA Member States. The prerogative of governments to manage
drug pricing independently stems directly from the Treaty of Lisbon, meaning that any action to
remove it would require a complicated bureaucratic process.69 Moreover, governments tend to be
quite protective of their independence from the central EU government, so efforts to move away
from reference pricing are likely to be met with resistance.

A potential solution that would leave the current pricing system in place, could be to provide
subsidies for firms that make their products available in peripheral European countries upon re-
ceiving marketing approval. These subsidies would be handed out by a centralized European
agency upon confirmation that an entry application has been sent and approved for entry in all
Eastern European countries (even though we do not observe this information in the data, we as-
sume that this agency would have a way to verify the firm’s action).

Our estimates suggest that the overall budget impact of this policy would be small. The av-
erage drug would receive an offer around e20 million in order to induce immediate entry.70 On
average, during the period between 1995 and 2017, around 27 new drugs received approval in

69Article 168 of the Treaty on the Functioning of the European Union (i.e. the Treaty of Lisbon) explicitly states that
“Union action in the field of public health shall fully respect the responsibilities of the Member States for the definition
of their health policy and for the organization and delivery of health services and medical care and the allocation of the
resources assigned to them.”

70This number is the expected revenue of the average drug. It is obtained by aggregating across drugs similarly to the
way that the expected profit for the moment inequality was built. The only difference is that we used the full sample of
481 drugs to build this estimate.
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the EEA. Hence, the overall impact of this subsidy would be around e550 million per year. This
is not a negligible sum, but still represents a very small fraction of the overall budget of the EU,
which in 2016 was around e150 billion. It is also worth noting that from the point of view of a
social planner, the lump sum constitutes a transfer, so any gains from early access, however small,
would improve the overall welfare in the system.71

Figure 13 plots a distribution of the cost of reducing delays by 1 country-year for all countries
in Eastern Europe over the range of the identified set of ψEU10. The purpose of this figure is not to
argue whether paying the subsidy is worth it, but rather to exemplify the kind of tradeoff involved.
A larger probability of idiosyncratic delays implies that subsidies have a smaller impact on overall
delays, hence the cost increases. At the upper bound, all delays are idiosyncratic, and therefore
subsidies cannot affect the entry sequence of any drug. However, for more reasonable values of
the parameter, the cost to increase access is not prohibitive. If we again assumed that ψEU10 is equal
to ψITALY, then it would cost approximately e43 million to reduce delays by one drug-year in all
Eastern European countries. Given that Eastern Europe contains roughly 80 million individuals,
this comes at the cost of 50 cents per person.

8 CONCLUSION AND NEXT STEPS

This paper tries to determine the extent to which external reference pricing policies contribute to
the disparity in access to prescription drugs across countries. ERP generates complex incentives
for firms who might benefit from strategically delaying entry in countries with low willingness to
pay for drugs. Using a novel moment inequality approach, we characterize the impact of these
policies on launch delays and on firm revenue. Our methodology allows us to obtain identification
even though the firm’s actions are unobserved, thus contributing to a growing body of literature
showing how moment inequalities can make even the most complicated models tractable.

While generally speaking estimation using moment inequalities precludes the ability to run
counterfactuals, we are able to simulate one important scenario: the removal of reference pricing.
In this particular case, the solution to the problem is easy to derive: firms no longer have any
reason to delay entry in any country, so the optimal strategy is simply to send applications every-
where right away. We find that if ERP were eliminated delays in Eastern Europe would fall by up
to 14 months per drug in each Eastern European country.

Policymakers and industry insiders are both aware of the externality generated by ERP, and
several proposals to replace reference pricing with alternative systems have been suggested (Kanavos
et al., 2011; OECD Health Policy Studies, 2008; Towse et al., 2015; Vogler et al., 2015). Our hope
is that the analysis in this paper will contribute to the policy discussion on this important topic.
One of our key results is that while the impact on delays is potentially large, revenue implications
in the current equilibrium are relatively small. We exploit this insight to propose a centralized

71This conclusion might not hold in a model where additional frictions or dynamic considerations exist (e.g a shadow
cost of raising governments funds, or dynamic implications on the incentives to invest in R&D). However, the size of
the subsidy is small enough that these additional considerations will likely be second-order.
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system of lump-sum subsidies that compensate firms for the profit loss of ERP in exchange for
forgoing strategic delays. We believe that this approach is particularly promising, as it would not
require any political transfer of power from individual countries to a central authority, and its
budget impact would be minimal.

Our analysis also has some limitations. One of these limitations is that our model does not
include a source of structural error, such as drug-country-year specific shocks in demand or price
that are observed by the firm, but not by the econometrician. As we discuss in Section 5.1, un-
observable demand shocks would likely lead us to underestimate the impact of strategic delays.
Hence, this omission may lead us to underestimate the impact of reference pricing.

We also assume that our price model predicts prices exactly. Introducing a structural error
in the price estimation would create an insurmountable econometric challenge, since this error
would propagate through reference pricing channel in ways that would be difficult to account
for. One possible avenue to relax this assumption might be to assume that the structural error
on price is known to the firm, but not to foreign governments. This would prevent the error
from propagating across countries. However, the intuition behind the model would not change
much. This type of error could help justify earlier-than-predicted entry, but the opposite (later-
than-predicted entry) is usually much more common in the data.

We assume that firms act as single agents even though our demand and price models imply
that the actions of other firms can have an impact on revenue. Our demand model implies that
entry of a competitor will negatively affect the market shares of all other products within the
therapeutic class, and our price function suggests that entry of a competitor may have a negative
impact on price. This introduces a certain degree of internal inconsistency in the model, though
empirically, these effects may not be large enough to elicit a strategic reaction — in particular,
the effect of competitors on price is very noisy according to our estimation results. Allowing for
multiple agents is unfortunately not feasible in the current environment, as the expected revenue
of alternative strategies in the moment inequality can only be computed holding the strategy of
other firms fixed. This is a more general problem in the moment inequality literature, which has
usually been more successfully applied to single-agent problems, rather than games involving
multiple agents.

Finally, there are also elements that we do not model explicitly. We take the regulatory envi-
ronment as exogenous. Presumably, the government could choose the reference pricing function
according to some optimal decision-making criterion. We ignore this possibility here. The ques-
tion of why reference pricing is effective in lowering prices is also interesting. Experience suggests
that governments do not need to resort to ERP if they want to implement price cuts (we observe
several instances of temporary price cuts in the data that do not seem to be related to reference
pricing). Indeed, there is some evidence that reference pricing is sometimes used only as a pre-
tense for cuts that would have occurred anyway. For example, Greece changed its reference pric-
ing function in 2010 to a formula that resulted in roughly 10-20% lower prices across the board.
It is likely that these cuts would have been mandated regardless due to the financial situation of
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the country at the time. These considerations go beyond the scope of the paper (we believe it is
reasonable to assume that these changes are exogenous from the point of view of the firm), but
might provide fertile ground for future research.

Another area for future work is the translation of the delay loss generated by ERP into a wel-
fare measure. Throughout the paper, we have focused on launch delays as our main outcome
measure, because a reliable measure of welfare is hard to infer from the information available in
our data. Translating delays into welfare might require a more sophisticated demand or price
model. Alternatively, one could try to obtain data on health outcomes and examine whether the
introduction of specific drugs affected mortality rates (see for example Dubois and Kyle, 2016).
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Table 1: SUMMARY STATISTICS

Full Sample Main Sample Dynamic Sample

# therapeutic classes 241 109 44
# firms 2,944 168 47
# molecules 6,354 475 86
Class-firm-mol combinations 55,134 481 87
Class-firm combinations 375 84

Diffusion
mean 2.1 20.1 21.3
median 1 22 24

Yearly sales
mean e3,547,665 e115,427,475 e121,977,298
median e92,489 e39,214,276 e46,340,438

Approval Method
EMA 312 24
MRP 127 46
Other 42 17

This table reports summary statistics for the IMS MIDAS database. The full sample includes all prescription drugs in
the data. The main sample includes prescription drugs that satisfy the criteria laid out in section 3.1 on page 11. The
dynamic sample includes a subset of main sample drugs whose patent expired by December 31st, 2012. See Section 2.1
for an overview of the marketing approval methods. Yearly sales refers to the entire EEA territory.
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Table 2: PRICE ESTIMATION RESULTS

Country ln
(
γj
)

µj

Austria -0.099 [-0.134,-0.071] 0.199 [0.022,0.444]
Belgium -0.123 [-0.156,-0.093] 0.119 [0.010,0.446]
Bulgaria -0.230 [-0.317,-0.145] 0.987 [0.432,0.998]
Denmarkb -0.068 [-0.102,-0.046] 0
Estonia -0.170 [-0.380,-0.128] 0.994 [0.249,0.998]
Finland -0.126 [-0.165,-0.098] 0.332 [0.018,735]
France -0.098 [-0.130,-0.061] 0.098 [0.008,841]
Germanya,b 0 0
Greece -0.186 [-0.216,-0.035] 0.987 [0.841,0.999]
Hungary -0.145 [-0.240,-0.082] 0.991 [0.326,0.998]
Ireland -0.089 [-0.127,-0.062] 0.229 [0.018,0.840]
Italy -0.191 [-0.221,-0.110] 0.854 [0.219,0.994]
Latvia -0.201 [-0.317,-0.151] 0.805 [0.013,0.941]
Lithuania -0.204 [-0.359,-0.151] 0.996 [0.014,0.999]
Luxembourgc -0.200 [-0.247,-0.176] 0
Netherlands -0.183 [-0.220,-0.151] 0.293 [0.073,0.826]
Norway -0.143 [-0.186,-0.111] 0.846 [0.107,0.981]
Poland -0.119 [-0.238,0.025] 0.904 [0.239,0.989]
Portugal -0.176 [-0.220,-0.138] 0.093 [0.012,0.842]
Romania -0.253 [-0.351,-0.105] 0.994 [0.204,0.999]
Sloveniad -0.232 [-0.272,0.204] /
Spain -0.159 [-0.186,-0.131] 0.874 [0.151,0.975]
Swedenb -0.102 [-0.131,-0.080] 0
Switzerland 0.007 [-0.024,0.032] 0.020 [0.003,0.080]
UKb -0.201 [-0.233,-0.179] 0

Controls

Log quantity sold -0.019 [-0.024,-0.017]
Home-Firm Indicator 0.041 [0.011,0.079]
At least 1 other molecule in class -0.043 [-0.079,0.028]
At least 2 other molecules in class 0.013 [-0.024,0.045]
At least 5 other molecules in class -0.029 [-0.063,0.007]
At least 10 other molecules in class -0.003 [-0.031,0.016]
a The price level is normalized to Germany’s.
b Denmark, Germany, Sweden, and the UK do not use reference pricing during the period 2002-2012, so we set µj

to zero.
c Luxembourg references the price of the country of origin of the drug. We don’t know country of origin, so we

simply assume that µj is equal to 0.
d On occasion, a country’s price level is such that its reference price never binds. In these cases the coefficient is

undetermined.

This table reports coefficients from the price estimating equation (equation 10). ln
(

γj

)
is the country

fixed effect, in log terms, normalized with respect to the coefficient of Germany. µj represents the weight
assigned to the reference price. Values close to 1 mean that reference price is followed closely, while values
close to 0 mean that reference price does not matter (µj is restricted to the unit interval by design). See Section
4.2 for a detailed description of the price function and control variables. Standard errors are calculated using
nonparametric bootstrap with sampling at the drug level.
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Figure 2: AVERAGE DELAY FROM MARKETING APPROVAL BY COUNTRY
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This graph shows the average launch delay in months, from the approval date, conditional on entry, for all European
countries. Dark bands represent the overall impact of long-term delays (defined as delays of 4 years or longer). We
calculate average delays using all 481 drugs in our main sample. See Table 1 on page 42 for summary statistics of this
group of drugs, and section 3.1 on page 11 for a description of how this sample was created.
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Figure 3: CORRELATION BETWEEN PRICE LEVEL AND AVERAGE DELAYS BY COUNTRY
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This figure plots the relationship between price level average delay in months. Price level is calculated as the country
fixed effect from a regression of log price on drug, year, and country fixed effects. The coefficient for Germany was
normalized to 0 in this regression. Average delays are the same as in Figure 2. The plot is weighted by population (we
use data from 2012).
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Figure 4: CHANGE IN PRICES OVER TIME AND ACROSS COUNTRIES

(a) Prices in France, Germany, Italy, and Spain
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This figure plots average price trends over the life-cycle of a drug in France, Italy, and Spain, relative to Germany. We
use a specification that controls for drug fixed effects. For details, please consult section 3.3.

(b) Prices in Denmark, Finland, Norway, and Sweden
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This figure plots average price trends over the life-cycle of a drug in Finland, Norway, and Sweden, relative to Denmark.
We use a specification that controls for drug fixed effects. For details, please consult section 3.3.
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Figure 5: ABACAVIR ENTRY SEQUENCE
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Note: This figure plots the entry sequence of the drug for Abacavir (brand name Ziagen, developed and sold by ViiV
Healthcare), an antiretroviral therapy used to treat HIV-positive patients. The drug was originally approved in July
1999, using the centralized procedure administered by the EMA. The drug was not available in Latvia and Estonia as
of the fourth quarter of 2012, which is the last quarter of available data.
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Figure 6: ABACAVIR PRICE TRENDS

(a) FRANCE AND GERMANY
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This figure plots the yearly prices and reference prices for Abacavir in France and Germany (Germany does not use
reference pricing). France applies ERP only starting 5 years after the product is launched, which in this case happened
in early 2001, meaning that ERP would start first in 2005. While price in Germany is relatively constant, the price in
France falls after ERP is applied.

(b) GREECE AND SWITZERLAND
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This figure plots the yearly prices and reference prices for Abacavir in Switzerland and Greece. Even though both
countries use ERP according to our sources, we see that the price in Switzerland seems unaffected by the reference
price. The two even appear to diverge after 2007. Price in Greece behaves very differently. The price remains below
the reference price until 2010, when Greece implemented a reform of their reference pricing policy that resulted in a
lower benchmark. As the reference price falls, so does the price charged for Abacavir. There is some noise in the series
because Greece implemented price cuts at various points after the financial crisis of 2007-2008. The price charged in
2002 is also presumably an introductory price, potentially generated by noise or measurement error in the data.
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Figure 7: R2 COEFFICIENTS FROM DEMAND REGRESSIONS
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This figure plots the R2 coefficients from the demand regressions. We estimate 109 regressions, one for each therapeutic
class that contains at least one of the products in our main sample.
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Figure 8: DEMAND MODEL FIT

This figure plots the observed market share of main sample products, against the market share we predict using our
demand model.
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Figure 9: OPTIMALITY OF STRATEGIC DELAYS BY COUNTRY
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This figure plots the fraction of drugs for which delaying in each country is optimal. We use a sample of 87 drugs whose
patent expires on or before December 31st, 2012. By the time our sample started, in 2002, launches in many countries
had already occurred for some of these drugs. Hence, for each country j we estimated the y-axis variable using the
subsample of drugs that had not already entered in country j before 2002. This implies that the sample used is slightly
different for each country.
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Figure 10: STRATEGIC DELAYS IN EASTERN EUROPEAN COUNTRIES
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In this figure we consider a set of strategies where entry in Eastern European countries is delayed for t periods, where
t is between 0 and 10. We count the number of drugs for which each strategy is optimal, and plot it in a histogram
(the y-axis displays the fraction of drug, rather than the level). The figures shows that for 80% of drugs no delay is
preferable, but for 20% of drugs some delay is optimal.
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Figure 11: PROBABILITY OF OVERALL DELAYS BY COUNTRY
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In this figure we plot the overall probability of a delay in each country in Europe. We aggregate Eastern European
countries as a whole for consistency with the moment inequality estimation (details in Section 6.2). The plot includes
95% confidence interval bands for each parameter.
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Figure 12: RANGE OF POTENTIAL DELAYS IN THE ABSENCE OF ERP
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In this figure we plot the range of possible delays in Eastern European countries for the identified set of possible delay
parameters. The y-axis reports the total delay of the average drug among all Eastern European countries. The upper
bound of the interval returns the same average delay that is observed in the data (approximately 16 years, or 2 years
per country), because it is calculated to match the overall probability of a delay.
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Figure 13: COST OF REDUCING DELAYS BY 1 DRUG-YEAR IN EASTERN EUROPEAN COUNTRIES
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In this figure we plot the range estimate of the cost of reducing delays by 1 drug-year in all 8 Eastern European countries
in our sample. The y-axis is truncated above because the curve tends to infinity as ψEU10 approaches 0.669, which is the
value for which all delays are idiosyncratic, and therefore subsidies cannot change the delay profile.
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Appendices

A THEORETICAL DERIVATIONS

In this Appendix we derive some results from the main body of the paper, and present a few
complementary results that are not crucial to the results of the paper, but add robustness to the
framework we use.

A.1 Logit Model

The utility of consumer `, in country j, from consuming drug i (molecule m), belonging to thera-
peutic class κ, in year t is given by

ui(m,κ)`(j)t = δijt + (ζm,κ + (1− σκ) ε i`t)

where ζm,κ, is common for all i ∈ m, and distributed according to the unique distribution such
that if ε i`t is an extreme value random variable, then so is ζg + (1− σ) ε i`t (Cardell, 1997). δijt is
parametrized as in Equation 2.

With this setup, one can show that the country j market share of i within subset set m is given
by

sm
ijt =

exp
(

δijt
1−σκ

)
Dm (Xmt)

(A.1)

where

Dm (Xmt) = ∑
k∈m

exp
(

δkjt

1− σκ

)
and the market share of set m within the overall market is given by

sm/jt =
Dm (Xmt)

1−σκ

1 + ∑
h∈Gκ

Dh (Xht)
(1−σκ)

(A.2)

where Gκ is the set of all molecules in class κ. Hence, the overall market share of drug i is

sijt =
exp

(
δijt

1−σκ

)
Dm (Xmt)

−σκ

1 + ∑
h∈Gκ

Dh (Xht)
(1−σκ)

(A.3)

Derivation of the estimating equation Notice that the share of the outside option can be ex-
pressed as

s0jt =
1

1 + ∑
h∈Gκ

Dh (Xht)
(1−σκ)

(A.4)
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Consider the log ratio of the market share of item i in group m to the outside good. According to
the model, this can be expressed as

ln
(
sijt
)
− ln

(
s0jt
)

=

(
δijt

1− σκ

)
− σκσ ln (Dm (Xmt))

Combining equations A.2 and A.4 we also obtain

ln (Dm (Xmt)) =
ln
(
sm/jt

)
− ln

(
s0jt
)

1− σκ

Hence we can write

ln
(
sijt
)
− ln

(
s0jt
)
=

δijt

1− σκ
− σκ

1− σκσ

(
ln
(
sm/jt

)
− ln

(
s0jt
))

which implies

(1− σκ)
(
ln
(
sijt
)
− ln

(
s0jt
))

= δijt − σκ

(
ln
(
sm/jt

)
− ln

(
s0jt
))

=⇒ (1− σκ) ln
(
sijt
)
− ln

(
s0jt
)

= δijt − σκ ln
(
sm/jt

)
=⇒ ln

(
sijt
)
− ln

(
s0jt
)

= δijt + σκ ln
(

sijt

sm/jt

)
(A.5)

A.2 Proof of Theorem 1

To prove the result of the theorem, we first prove the following Lemma:

Lemma 3. Denote
λijt = γj exp

(
βZZijt−1

)
and let λit =

{
λijt
}

j∈Ni
. Then, there exists a set of weights ωijkt

(
St−1, {λiτ}t

τ=1

)
such that for any drug

i, country j, and year t

pref
ijt =

t

∑
τ=1

∑
k∈Rjτ

ωijkt

(
St−1, {λiτ}t

τ=1

)
pgov

ikτ−1

(
Dijt

(
ξ jt
))

Proof. This Lemma states that we can write pref
ijt as a linear function of government prices in all

previous periods, using weights that depend only on the current entry sequences of all firms and
structural parameters of the model other than the drug fixed effect. We use induction over t, where
t indexes time starting with the year after the product was first approved (in the year of approval
there cannot be any reference prices).

Consider t = 1. We want to show that for all j,

pref
ijt = ∑

k∈Rj1

ωijk1 (S0, λi0) p
gov
ik0

(
Dij1

(
ξ j1
))

(A.6)
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The definition of the reference price is

pref
ij1
(
Ei0, Dij1

(
ξ j1
))

= Fref
j1

({
pik0

(
Dij1

(
ξ j1
))}

k∈(Rj1∩Ei0)

)
Since reference pricing cannot be applied at time t = 0, the prices that can be referenced must be
government prices:

pik0
(

Dij1
(
ξ j1
))

= p
gov
ik0

(
Dij1

(
ξ j1
))

Then, if Fref
j1 is a linear function, like an average, equation A.6 is satisfied for constant weights.

Fref
j1 can also be the minimum function, or the average of the three lowest prices, which are not

linear.72 These functions however, can be expressed as weighted averages, where the weights will
depend on the relative ranking of the volume adjusted country government prices, which in turn
will depend on λij0.

In these cases weights can be constructed as follows. Recall that Ei0 =
{

j : sj0 6= 0
}

is the set
of countries where the product is available in period 0. This set can be obtained from information
contained in S0. We assume WLOG that Ei0 is not empty (if it is, then there can be no possible
reference and the case of t = 1 is identical to t = 0). Let nk denote the rank of k ∈ E0 in increasing
order of λi1. In other words, if nk = 1, then

λik1 = min
{

λi`1 : ` ∈
(

Rj1 ∩ E0
)}

and, more generally,
λik1 = min

{
λi`1 : ` ∈

(
Rj1 ∩ E0

)
∧ n` ≥ nk

}
Hence, the country that ranks first is the one with the lowest government price, the one that ranks
second has the second-lowest price, etc. Finally, let mij1 = min {|E0| , 3}, where the operator |·|
indicates the cardinality of a set.

If Fref
j1 is the average of the three lowest prices, the weights can be written as

ωijk1 (S0, λi0) =

1 if nk = 1

0 otherwise

If Fref
j1 is the average of the three lowest prices instead, construct the weights as

ωijk1 (S0, λi0) =


1

mij0
if nk ≤ mij0

0 otherwise

These weights are written as a function of S0 and λi0 only, hence they satisfy the premise of the
proposition.

72See Figure 1.
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To conclude the proof, suppose that the assertion of the proposition is true for τ ∈ {1, . . . , t− 1},
and show that it must hold for t as well. This is easy to prove. We can walk through the same
exact steps as we did for t = 1, but substituting pikt−1

(
Eit−1, Dijt

(
ξ jt
))

for λi1. This will give us
weights for pref

ijt as a linear function of the prices in the previous period. By construction, prices
in the previous period are a weighted average of government prices and reference prices. The
reference prices are themselves linear functions of adjusted government prices by the inductive
assumption. Since the sum of linear functions is also linear, the proposition must hold for period
t as well. �

The Lemma gives us a way to write the reference price as a weighted average of government
prices. Since government prices are a multiplicative function of θi, so are reference prices. Hence
we can write

pref
ijt (·) = p̃ref

ijt (·) · θi

where p̃ref
ijt is not a function of θi. Then, we can write

pijt (·) =

θiγj · exp
(

βZZijt + βD ln
(

Dijt
))

if pref
ijt (·) ≥ p

gov
ijt (·)

θiγj · exp
(

βZZijt + βD ln
(

Dijt
))

+ µj p̃ref
ijt (·) θi if pref

ijt (·) < p
gov
ijt (·)

which shows that pijt (·) is a multiplicative function of θi. Hence, when we consider pijt
pikt+1

, θi will
appear in both the denominator and the numerator and we can eliminate it, giving us the result
in equation 9.

�

A.3 Foundations for the Price-Setting Equation

In the main body of the paper we do not provide a micro foundation of the price setting equation
from a utility- or revenue-based optimization model. The characteristics of such a model are less
relevant for our paper. However, in this section we provide two possible sets of assumptions that
could justify an estimation equation identical to the one we use.

Foundations as a static Nash Bargaining Model

We assume that the firm and the government play a Nash Bargaining game. The game is repeated
every period, but for simplicity the two parties only split the static welfare gains from the current
period. In reality, prices impose dynamic constraints through reference pricing that both agents
should take into account. To eliminate these dynamic considerations one could assume that the
government is a myopic agent and that the firm’s bargaining unit is only tasked with carrying out
the negotiation, without concerns for the future ramifications of the agreed-upon price.73

73There are several reasons why short-term considerations could in fact play a major role for most government agen-
cies. First, the main goal of pharmaceutical agencies is to keep spending within the limits of their budget, which is
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The equilibrium price in a standard Nash Bargaining model is given by

p? = arg max
p

[
∆Wijt

]bj ×
[
∆Πijt

]1−bj

where ∆Wijt represents the change in the welfare of the government from having drug i available,
∆Πijt represents the incremental change in revenue, and bj is the bargaining power of country j.
Notice that the interpretation of ∆Wijt is not necessarily welfare, but could more generally be de-
scribed as the objective function of the government agent tasked with completing the negotiation.

Under our assumptions of static bargaining, ∆Πijt is simply the potential revenue in country
j, and since demand is price inelastic, we can divide through by demand to recast the problem as
a negotiation over the unit price of the product (instead of total revenue). We abstract away from
marginal costs of production since for brand drugs they are a negligible fraction of prices. The
simplified problem can be written as

p? = arg max
p

[
∆wijt − p

]bj × [p]1−bj

where the interpretation of ∆wijt is the average change in the welfare function from obtaining an
additional unit of drug i. The standard Nash bargaining solution, can then be written as

p? = ∆wijt
(
1− bj

)
This price denotes the equilibrium in the absence of reference pricing, and represents the govern-
ment price p

gov
ijt .

To account for the impact of reference pricing we propose that the government can negotiate
more effectively by eliciting a signal about what prices are charged abroad. We incorporate this
possibility in the model by assuming that the signal (i.e. the reference price) affects the bargaining
weight assigned to the government. The reference price pref

ijt is calculated as described in the main

body of the paper.74 Given pref
ijt , we write the bargaining weight of the government as

Bij

(
pref

ijt

)
= bj +

(
1− bj

)
µj

1−
pref

ijt

p
gov
ijt

 · I{
pref

ijt <p
gov
ijt

}

where p
gov
ijt = ∆wijt

(
1− bj

)
is a function of model parameters that reflects the price that the gov-

ernment would have obtained without using reference pricing. We define the bargaining weight
of the firm as 1− Bij

(
pref

ijt

)
.

often specifically carved out for prescription drugs thus limiting the ability to generate trade-offs such as paying more
for cost-effective drugs that would save money in other areas of health care, such as inpatient care. Turnover of gov-
ernment officials might also contribute to the failure of adopting long-term strategies. On the pharmaceutical company
side, most firms have a separate bargaining unit for each country. Informal conversations with industry insiders seem
to suggest that these unit operate in relative independence from one another.

74As a side note, the reference price does not necessarily need to be linked to other prices, but can be anything else
that might affect negotiations.
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The function Bij (·) has several attractive properties. First, it reduces to the base case whenever
pref

ijt < p
gov
ijt . This has the intuitive implication that observing a reference price that is higher

than the country’s own internal benchmark does not affect negotiations. Second, the bargaining
weight is inversely proportional to the reference price, meaning that a lower reference price lets
the government extract a greater discount. Third, as long as µj ∈ (0, 1) the bargaining weight is
also lies on the unit interval, which insures an interior solution for the first-order condition.

The first-order condition of the Nash Bargaining problem with the specified bargaining weights
is

[p] :
(
∆wijt − p

)−1+b+µj−bjµj−
µj pref

ijt
∆wijt ·

((
1− bj

) (
1− µj

)
∆wijt + µj pref

ijt − ∆wijt

)
p
−bj(1−µj)+µj

1−
pref

ijt
∆wijt


= 0

and has three roots:

p?1 = 0

p?2 = ∆wijt

p?3 =
(
1− µj

) (
1− bj

)
∆wijt + µj pref

ijt

Notice that pref
ijt ≤

(
1− bj

)
∆wijt whenever the reference price binds. Hence, p?1 < p?3 < p?2 .

The second-order condition is given by

SOC : p
−1−b(1−µj)−µj

1−
pref

ijt
∆wijt


·
(
∆wijt − p

)−2+bj+µj−bjµj−
µj pref

ijt
∆wijt ·(

∆wijt
(
1− bj

) (
1− µj

)
+ µj pref

ijt

) (
−bj∆wijt

(
1− µj

)
+ µj

(
pref

ijt − ∆wijt

))
and, for p ∈

(
0, ∆wijt

)
, is proportional to

SOC ∝
(

∆wijt
(
1− bj

) (
1− µj

)
+ µj pref

ijt

) (
−bj∆wijt

(
1− µj

)
+ µj

(
pref

ijt − ∆wijt

))
∝

(
−bj∆wijt

(
1− µj

)
+ µj

(
pref

ijt − ∆wijt

))
< 0

Hence the objective function is maximized for p = p?3 . The two other roots of the first-order
condition are also roots for the second-order condition, therefore they represent points of inflec-
tion.

The final solution to this bargaining problem is therefore made up of two equations:

pijt =


(
1− bj

)
∆wijt if pref

ijt ≥
(
1− bj

)
∆wijt(

1− µj
) (

1− bj
)

∆wijt + µj pref
ijt if pref

ijt <
(
1− bj

)
∆wijt
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This solution will have the same form of our estimating equation as long as
(
1− bj

)
∆wijt can

be written as a function of the observables we have included in our parametric function for the
government price.

A.4 Proof of Theorem 2

To prove the theorem we will rely on the strong law of large numbers applied to non-identical,
independent random variables. For this reason it will be useful to define the payoff of firm l as a
random variable. We will then show that the set of these random variables (one for each firm l)
satisfies the Kolmogorov criterion, which in turn implies the strong law of large numbers.

Let Ṽlt (Ait; Slt−1, S−lt−1) denote the payoff of the firm starting in period t, conditional on the
value of state variable in period t− 1 and on firm l following strategyAlt. Note that by definition,
E
[
Ṽlt (Ait; Slt−1, S−lt−1)

]
= Ṽt (Alt; Slt−1, S−lt−1).

For the proof of the Theorem we need the following Lemma and Corollary.

Lemma 4. Let Π (Sl , S−l) be defined as in equation 8. Then Π (Sl , S−l) is finite.

Proof. We prove that Πτ (Sl , S−l) is finite by showing that period profits are bounded. The real-
ization of period profits depends on ξ jt. Define

Πτ

(
Sl , S−l , ξ jτ

)
= ∑

i∈Il

∑
j∈Siτ

pijτ
(
Slτ−1, S−lτ, Dijτ

(
ξ jτ
))
· Dijτ

(
S−lτ, ξ jτ

)
For any given product i and country j, we can write demand as

Dijτ
(
S−lτ, ξ jτ

)
= MSjτ ·

exp
(
αij + βiageiτ + ηiNFijτ + ξ jτ

)
1 + ∑

`∈E−lτ

exp
(
α`j + β`age`τ + η`NF`jτ + ξ jτ

)
where MSjτ is the market size in country j in period τ. Hence, Dijτ

(
S−lτ, ξ jt

)
∈
(
0, MSjτ

)
.

Price is bounded above by the government price:

pijτ
(
Slτ−1, S−lτ, Dijτ

(
ξ jτ
))
≤ p

gov
ijτ

(
Slτ−1, S−lτ, Dijτ

(
ξ jτ
))

Moreover, using the definition of government price in equation 4 we can rewrite

p
gov
ijτ

(
Slτ−1, S−lτ, Dijτ

(
ξ jτ
))
· Dijτ

(
ξ jτ
)
= p

gov
ijτ (Slτ−1, S−lτ, 1) ·

(
Dijτ

(
ξ jτ
))1+βD

Hence, the period payoff of a single drug in any given country is bounded above by

p
gov
ijτ (Slτ−1, S−lτ, 1) ·

(
MSjτ

)1+βD

and bounded below by 0. This implies that the period payoff in any given country and period is
finite, and therefore Πτ (Sl , S−l) is also finite. �
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Corollary 5. Ṽlt (Ait; Slt−1, S−lt−1) has finite variance.

Proof. This lemma follows directly from Lemma 4. Ṽlt (Ait; Slt−1, S−lt−1) is defined as the dis-
counted sum of the expected period payoffs. By Lemma 4 the expected period payoffs are finite.
Let

ΠUB = max
(Sl ,S−l)

Πτ (Sl , S−l)

Then, the support of Ṽlt (Ait; Slt−1, S−lt−1) is bounded above by (T − t) ·ΠUB < ∞.
Since Ṽlt (Ait; Slt−1, S−lt−1) is also bounded below by 0, it must have finite variance. �

At this point we are ready to prove Theorem 2.

Proof of Theorem 2. For any given drug i, Vt
(
So

l , So
−l

)
represents a draw from the distribution

of Ṽlt (A?
it; Slt−1, S−lt−1). By Corollary 5, Var

(
Ṽlt (A?

it; Slt−1, S−lt−1)
)
< ∞. Moreover, the ran-

dom variables Ṽlt (A?
it; Slt−1, S−lt−1) are independently distributed. Thus, our premise satisfies

the Kolmogorov criterion, which implies that the strong law of large numbers applies to the se-
quence of random variables Ṽlt (A?

it; Slt−1, S−lt−1), and the sample average of the realized payoffs
will converge to the average of their expected values. Formally, for any ε > 0, we can find M′ such
that

1
M

M

∑
i=1

(
Vt
(
So

l , So
−l
)
− Ṽt (A?

lt; Slt−1, S−lt−1)
)
< ε

for all M > M′. This concludes the proof.

�
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